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ABSTRACT

We demonstrate a simple set of interrupt-related vulnera-
bility primitives that, despite being apparently innocuous,
give attackers full control of a microcontroller platform. We
then present a novel, minimalist approach to constructing
deniable bugdoors for microcontroller firmware, and con-
trast this approach with the current focus of exploitation re-
search on demonstrations of maximum computational power
that malicious computation can achieve. Since the intro-
duction of Return-oriented programming, an ever-increasing
number of targets have been demonstrated to unintention-
ally yield Turing-complete computation environments to at-
tackers controlling the target’s various input channels, un-
der ever more restrictive sets of limitations. Yet although
modern OS defensive measures indeed require complex com-
putations to bypass, this focus on maximum expressive-
ness of exploit programming models leads researchers to
overlook other research directions for platforms that lack
strong defensive measure but occur in mission-critical sys-
tems, namely, microcontrollers. In these systems, common
exploiter goals such as sensitive code and data exfiltration
or arbitrary code execution do not typically require com-
plex computation; instead, a minimal computation is pre-
ferred and a simple set of vulnerability primitives typically
suffices. We discuss examples of vulnerabilities and the new
kinds of tools needed to avoid them in future firmware.

Categories and Subject Descriptors

K.6 [Management of Computing and Information Sys-
tems|: Miscellaneous; K.6.5 [Management of Comput-
ing and Information Systems|: Security and Protectio-
nUnauthorized access (e.g., hacking, phreaking)
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1. INTRODUCTION

This paper examines what is arguably the most constrain-
ed “weird”! programming model to date: one using side-
effects of interrupts. This model has, to the best of our
knowledge, been overlooked. Although this model is weaker
than any previous exploit programming models, it is signif-
icant because of the increasing ubiquity of microcontrollers
and the ease with which this novel class of innocent-looking
“bug doors” can be planted into firmware.

In this paper, we demonstrate this model on synthetic vul-
nerabilities, and provide prototype tools to help locate sim-
ilar vulnerabilities on firmware in the wild, which we intend
for future work. Moreover, we describe a proof-of-concept
“bugdoor” implemented by making the interrupt handler of
an MSP430 TinyOS-based firmware application re-entrant.
This “bugdoor” is controlled solely by means of well-timed,
attacker-triggered interrupts.

Bug doors.

Unlike a traditional backdoor, where specialized code is
left in the program to surreptitiously control it, a bugdoor
does not leave undeniably malicious code in the target pro-
gram; it requires the attacker to supply specific inputs to
the target to insert the malicious program (e.g. shellcode)
and so perform unintended computation. The former type
of vulnerability is easier to detect and trace to the source,
as was the case with Alcatel’s network switch operating sys-
tem telnet backdoor in 2002 [10]. The latter is harder to
discover and to definitively frame as deliberate exploitation.

With the building blocks featured in our synthetic vul-
nerabilities situated in firmware, an attacker would have a
deniable bugdoor that involves no common forms of memory
corruption and would therefore likely be missed by vulner-
ability scanning tools. Our prototype tools, on the other
hand, show a basic set of tell-tale conditions associated with
such hypothetical bugdoors.

“Two gadgets is all you need”.

In the following two sections we put our programming
model in historical perspective of exploitation programming.
We then discuss the microcontroller threat model, the tar-

In the sense of “weird machines”, unexpected programming
modes of trusted systems that we discuss later.



geted processor MSP430, and our “interrupt-oriented pro-
gramming” model itself (a pun on ROP), starting with its
primitives and continuing with the bug door that realizes
it. We then describe our (inconclusive) attempts at finding
such code in the wild, and wrap up with ideas for follow-on
work.

2. MOTIVATION AND HISTORY:
WHITHER EXPLOITATION?

2.1 Exploitation and its programming models

Research in exploitation techniques traditionally focused
on feature-rich targets such as servers, desktops, and smart
phones, where exploitation co-evolved with protective mea-
sures. Indeed, techniques such as return-to-libc [27], return-
to-PLT [18], which generalized the reuse of code chunks by
chaining stack frames pointing to them [20, 14], emerged
in response to protective measures such as Openwall and
PaX [28, 29] and co-evolved with such measures (e.g., [18,
8, 17]).

Interestingly, the more significant the barriers posed to
attackers, the more expressive and general exploit program-
ming models became. In 2000 [20] Gerardo Richarte ob-
served that chunk chaining techniques could apparently en-
code “any program”; in 2007, Shacham Hovav [24] proved
that x86 stack-based libc end-of-function block chaining was
a Turing-complete programming model, at the same time
coining the term Return-Oriented Programming (ROP) for
such models. Since then, completeness has been shown to
exist with less and less resources, such as with only cer-
tain classes of instructions [6], only constant-length instruc-
tions on platforms such as RISC [5]. Completeness has
also been shown to exist when payloads are restricted to
certain character sets [23]—even to just English dictionary
words [15]—and when the payloads had to work on several
ISAs at once [9)].

This co-evolution highlighted the nature of exploits as
programs written for and assisted by certain combinations
of features and bugs in the targets—so-called primitives [21,
22]—used in a manner similar to assembly instructions (e.g.,
[13]). These unusual, emergent target machines and pro-
gramming modes for exploit-programs became known as “we-
ird machines” [4, 7, 2]. Typically, weird machines’ existence
was a surprise for the target’s developers, but deliberate cre-
ation of them to provide a deliberate “debug door” or simply
a “bug door” is also possible.

2.2 The distraction of Turing-completeness

Most weird machines were proved to be Turing-complete,
following in the footsteps of [24]—partly because it pleases
a certain kind of computer scientist to have a theorem like a
cherry on top of a paper, and partly because other kinds of
computer scientists saw offensive papers merely describing
a novel exploit technique as incremental and unscientific.
Arguably, the original proof of libc-based ROP completeness
was necessary to change the academic view of exploits as
limited and ad-hoc; it certainly made the great step forward
of replacing the outmoded threat model of “malicious code”
(and the unhelpful focus on detecting such code) with the
more relevant model of malicious computation inherent in
most general-purpose systems.

However, the computation performed by an exploit only
needs to be powerful enough to achieve the exploiter’s actual

goals; there are no points awarded for additional expressive
power, nor for extra complexity. The golden rule of exploita-
tion is that when a thing can be reliably accomplished with
minimal means, it should be accomplished with just such
means. However, practical minimality has been overshad-
owed by pursuing techniques with maximum computational
power. This disconnect is the starkest for microcontrollers,
upon which our trusted and mission-critical systems contin-
ually increase their reliance.

2.3 Microcontroller exploitation

It was necessity that drove practical evolution of ROP and
other techniques for feature-rich targets towards more ex-
pressive programming models. Essentially, protective mea-
sures forced exploits to emulate the OS’ native linkers (cf. [3]
on the “Bring Your Own Linker” pattern), which perform
complex computations (e.g., GNU/Linux dynamic linker is
a Turing-complete platform for its metadata considered as a
program [25]). Accordingly, a rich set of primitives adding
up to a computation model in which (nearly) arbitrary al-
gorithms could be expressed helped in practical exploitation
of such targets. In other words, computational power (up
to Turing completeness) helped even when it wasn’t strictly
required.

For microcontrollers, the exploiters’ situation is quite dif-
ferent. In absence of countermeasures, microcontroller vul-
nerability primitives need not provide a computationally rich
environment; they just need to enable typical goals such as
exfiltration of firmware code, exfiltration of sensitive data
such as cryptographic keys or configuration parameters or
code execution in firmware contexts. Exploit computation
in microcontrollers need not be complex, and the primitives
it requires to succeed may in fact be limited to a single write
to a specific memory address or a single control flow redi-
rection.

Microcontroller exploitation thus poses a different class of
research problems, which, to the best of our knowledge, has
been overlooked. Namely: what are the minimal combina-
tions of primitives that still serve the attacker’s goals (rather
than, as in feature-rich targets, allowing the attacker to en-
code arbitrary algorithms)?

We can pose this question more precisely in the case of
bugdoors, vulnerabilities deliberately introduced into a sys-
tem to provide a deniable backdoor. What is a minimal
patch that would provide such a backdoor and would be
least likely to be spotted by bug-finding tools looking for
memory corruption bugs?

3. RELATED WORK

Exploitation of computationally rich targets has a rich
history, which was outlined above. The overall direction
of this history has been doing more with less—essentially,
keeping full control of the target and (Turing-)complete ex-
pressiveness of exploit programs with an ever-shrinking set
of primitives. A good history sketch of primitives and at-
tacks can be found in [16]. It turned out that many kinds of
special-purpose data could also drive Turing-complete com-
putations on the respective standard code that interpreted
such data (e.g., [19, 25, 1]).

At the same time, for microcontrollers, the meaning of
exploitation was different, reflecting the difference in threat
models. In servers, etc., exploitation’s typical goal is full
control of the target (“root shell”, for short); in microcon-



trollers, it is the exfiltration of firmware or data. For most
microcontroller deployments, firmware is the important thing;
once the attacker has the firmware, the rest of his goals
are easily accomplished. This may or may not be due to
firmware’s general buggyness and lack of higher-grade pro-
tection such as NX memory or randomization; sometimes
the firmware even contains passwords or private keys.

Goodspeed and Francillon demonstrated a good example
of advanced microcontroller attacks in [11]. Their “half-
blind” ROP attack circumvents protections of the MSP430,
using only knowledge of the MSP430 Bootstrap Loader (BSL)
code. The BSL is a small program present in ROM or pro-
tected flash of the MSP430 that allows developers to pro-
gram the memory of the MSP430, typically for installing
firmware updates. BSL operations that read memory are
password protected in order to prevent unauthorized read-
out of code or data. In this attack, the entry point of a
specific ROP gadget is guessed at random with a 1% suc-
cess rate, and a buffer overflow is found by fuzzing. Given
both this ROP gadget entry point and the buffer overflow
vulnerability, a ROP payload can be deployed to circumvent
protections in the BSL.

4. THREAT MODEL FOR MICROCONTR-
OLLERS

The security architecture of microcontroller was designed
with a specific threat model in mind. The secrecy of mi-
crocontroller firmware is crucial to prevent the production
of counterfeit products with identical firmwares and theft
of service through the alteration of firmware (e.g. changing
power usage records on a “smart meter” to reduce electric-
ity bills). To preserve the secrecy of firmware data while
still allowing devices to receive firmware updates, microcon-
troller manufacturers typically use a bootloader and a com-
bination of “fuses”—special write-once registers that contain
permissions—to enforce access control on read/write opera-
tions on ROM.

An attacker targeting microcontrollers therefore aims to
exfiltrate data, such as firmware, from the chip package.
We assume that the attacker controls the processor, i.e., can
slow down the clock, observe General Purpose Input/Output
(GPIO), send signals to any pins, etc. However, we do not
assume that the attacker possesses the capability to carry
out sophisticated hardware attacks such as the one described
in [12], where the integrated circuit board itself is penetrated
to expose the device’s circuits and allow data exfiltration
through microprobing.

Our synthetic attacks assume that the attacker possesses
some knowledge of the behavior of firmware, particularly
that of the interrupt handlers. This scenario applies to com-
mon cases where the attacker has access to source code of
older or similar versions of the target device firmware, but
does not have access to the source code of the firmware run-
ning on the device itself. Given the fact that interrupt han-
dlers are usually boilerplate code that are rarely changed
between firmware versions, such a scenario is very feasible.

Our “bugdoor” attack assumes that the attacker can view
and modify firmware source code, but not in a manner that
is obviously malicious. This scenario applies to cases where
the target microcontroller runs open source firmware, such
as TinyOS, that an attacker could contribute his own mod-
ifications to, subject to peer review.

S. ROP, MEET “1OP”

The classic way to exploit a computing system is via its
inputs. Any processed input is really a program; an exploit
is merely a program with unexpected effects, format, compo-
sition modes, and, sometimes, unexpected input and output
channels.

For our Interrupt-oriented Programming trick (IOP, a pun
on ROP), we will use the fact that, other than data, a pro-
cessor also takes interrupts as inputs. More specifically,
the processor can be induced to execute interrupt handler
code by events that can often be triggered externally by an
attacker (e.g., sending an edge to a specific pin). In the same
way that an a vulnerable target can be “programmed” by an
attacker with a carefully crafted stack frame passed to it as
input, we “program” a processor with a series of well-timed
interrupts.

If our timings are precise enough to interrupt the processor
while it is executing specific instructions, we can treat con-
secutive chunks of instructions starting at interrupt vector
entry points and ending at another interrupt as our “gad-
gets”, except that the starts of these “gadgets” are fixed,
while the endings depend on our ability to deliver the inter-
rupting interrupt at just the right instruction.?

Achieving such instruction-level timing precision on state-
of-the-art server processors is clearly out of reach, since their
high clock speeds make timing interrupts infeasible. How-
ever, this technique is feasible for microcontrollers that have
far lower clock speeds and support downclocked, low-power
processor states. For example, this technique will be appli-
cable to the various, ubiquitous microcontroller-based sen-
sors and “smart” devices, such as personal medical devices,
industrial control systems, and “smart homes”, on which we
are getting increasingly reliant today.

Of course, interesting instructions should be found close
enough to the beginning of interrupt vector chunks in the
targeted firmware to be of use. It turns out that, with the
minimalist primitives we discuss in section 7, we can plant an
effective “bug door” there (which we describe in section 10).

Thus our objective is to explore programming with timed
sequences of interrupt-triggering signals that would result in
the execution of unintended, attacker-controlled computa-
tion. Formally speaking, our IOP programs are sequence of
pairs (t;, s;), where to, t1, ..., tn—1, tn is the sequence of tim-
ings corresponding to CPU clock cycles, and so, $1, ..., Sk—1, Sk
is the set of interrupt-triggering signals. ¢o is the time before
the execution of the first instruction in the target program
(clearly, timings ¢; only make sense relative to a moment
when the processor is in known state, such as its initial re-
set). For each pair pairs (¢;,s;), the interrupt that signal
s; triggers must enabled at time ¢; (see the discussion of
interrupt-enabling bits below).

For this study, we looked at several MSP430-powered de-
vices: EZ430U, EZ430URF, FET430UIF, MSP430FET, and
GoodFET. We will describe this processor now, before we
launch into IOP primitives.

6. TARGET PROCESSOR: TEXAS INSTRU-
MENTS MSP430

In other words, our gadgets are almost the exact opposite
of ROP ones; there needs to be nothing special about the
instruction on which we break out of the gadget, no control
flow semantics of RET or JMP.



The Texas Instruments (TI) MSP430 is a 16-bit ultra-
low power microcontroller. The native MSP430 CPU imple-
ments a Reduced Instruction Set Computer (RISC) archi-
tecture with 27 instructions, 7 addressing modes, and 16-bit
addressing. The extended MSP430X architecture supports
20-bit addressing, allowing it to directly address a 1-MB ad-
dress range without paging. TI MSP430 microcontrollers
draw low amounts of electric current in idle mode, and sup-
port several low-power modes. The MSP430 CPU can be
downclocked to further reduce power consumption. More
details about the features of the MSP430 family of micro-
controllers can be found in [30].

The TI MSP430’s low cost, low power consumption and
power saving features has made it a popular choice for use in
low power embedded devices, such as the Shimmer Wireless
Sensor Platform [26] and the Bodymedia FITTM wearable
medical devices (e.g., [34]).

For study, we specifically examined the MSP430F2618.
The MSP430F2618 uses the MSP430X architecture, and is
the embedded processor used in the GoodFET42, an open
source JTAG adapter developed by Travis Goodspeed.

6.1 How interrupts work in the MSP430

There are two types of interrupts in the TI MSP430:
maskable interrupts and non-maskable interrupts (NMIs).

Maskable interrupts are caused by peripherals with inter-
rupt capabilities. Maskable interrupts can either be disabled
individually by a per-peripheral interrupt enable bit, or all
maskable interrupts can be disabled by the General Inter-
rupt Enable (GIE) bit in the Status Register (SR). The SR is
cleared when a maskable interrupt is received, thus clearing
the GIE bit and disabling any further interrupts. Maskable
interrupts can be nested only if the GIE bit is set inside of
an interrupt handler.

NMIs cannot be disabled by the GIE bit. Instead, they are
enabled by individual interrupt enable bits. When an NMI
is accepted, all individual interrupt enable bits are reset,
disabling any further NMIs. Software must manually set
NMI enable bits to re-enable NMIs.

NMIs can only be generated from three sources: an edge
on the RST/NMI (reset) pin, an oscillator fault, or an access
violation to flash memory.

When an interrupt occurs, the program counter (PC) and
SR are pushed onto the stack, interrupts are disabled, and
the contents of the interrupt vector of the interrupt with
the highest priority are loaded into PC so control flow is
transferred to the interrupt handler. This takes 5 or 6 CPU
cycles in the MSP430X and MSP430 CPUs respectively.

Interrupt handlers terminate with the reti instruction,
which pops SR and PC off the stack to restore program state
and execution context to the point where the interrupt was
triggered. This takes 3 or 5 CPU cycles in the MSP430X
and MSP430 CPUs respectively ([30]).

7. 10P PRIMITIVES

For any series of interrupts to affect the processor as we
described above, there must exist some interdependency of
state between the interrupt handlers’ code, and some ac-
cumulation of state in interrupt handlers. We call such se-
quences of instructions IOP primitives. These primitives are
“pre-vulns”, in that they may, in certain combinations, lead
to a vulnerability exploitable with IOP; however, by them-
selves they may well be innocuous and never triggered in

common firmware execution patterns.
The following is a non-exhaustive list of IOP primitives:

e State accumulation. An instruction sequence that
writes to a register/memory location without first set-
ting it or restoring its original value afterwards. Such
an instruction sequence would accumulate state in this
register/memory location on each invocation of the in-
terrupt handler.

e Memory write. An instruction sequence that writes
an immediate value, register value, or value in memory
to a register/memory location without overwriting the
written value afterward. This could be used to perform
arbitrary writes.

e Arithmetic. An instruction sequence that performs
arithmetic on two values from registers or memory.
Combined with a state accumulation and memory write
primitives, such a primitive would allow arithmetic
to be performed on arbitrary values stored in regis-
ters/memory and accumulated for later use.

e Stack growing. An instruction sequence that grows
the stack (i.e., writes to memory pointed to by SP and
decrements SP). This could be used to overwrite mem-
ory and to instrument return values on the stack. If
this instruction could be invoked an arbitrary number
of times (e.g. through interrupt nesting), this would
be an unbounded primitive. Otherwise, it is bounded.

e Stack alignment. An instruction sequence that grows
by a non-standard number of bytes. This could be used
with a stack growing primitive to grow the stack to a
word-aligned address. For example, if we had an un-
bounded stack growing primitive that grew the stack
by 4 bytes (2 words) each time and a bounded stack
alignment primitive that grew the stack by 2 bytes,
invoking the stack alignment primitive after invoking
the stack growing primitive a certain number of times
would allow the attacker to decrement SP to any word-
aligned address lower than the current SP.

Unlike ROP gadgets, which produce the same enduring
effects whenever they are used, IOP primitives behave dif-
ferently depending on the context they are invoked in, and
produce effects that are sometimes ephemeral. For exam-
ple, an interrupt handler containing a state accumulating
instruction sequence and ending with an state reset instruc-
tion can only be used as a state-accumulation primitive if
the accumulated state is used in some way before it is re-
set. These constraints make useful IOP primitives difficult
to identify.

8. TOOLS AND SETUP

8.1 Hardware

In order to deliver the timed-signal payload to the target
TI MSP430F2618, we needed to be able to observe the state
of the microcontroller and send interrupt-triggering signals
to its pins. To achieve that, we connected two other micro-
controllers to the target device—one to communicate with
the hardware debugging interface of the target MSP430F2618,
and the other to send signals to the pins of that target. We



used a hardware debugging interface in our laboratory setup

to ensure that our attack was behaving correctly. In an ac-

tual IOP attack, the attacker would not have full debugging

access to the microcontroller, only the ability to observe

some of the microcontroller’s state and send signals to it.
Our experimental setup can be found in Figure 1.

JTAG debugging
YE.of  FET430UIF  fe--mmm--t8E
nﬂJ}ms
pc |28 GoodFET42-]TAG
w---%E__sl  GoodFET41 -
Signal edges

Figure 1: Laboratory setup

8.2 Software

To debug the target MSP430F2618 on the GoodFET42-
JTAG, we used mspdebug version 0.22, a free debugger for
MSP430 microcontrollers. We also extended the MSP430
simulator module in mspdebug to perform static analysis of
MSP430 firmware.

To control and flash the GoodFET42-JTAG and Good-
FET41, we utilized the GoodFET firmware and client soft-
ware. We also modified the GoodFET firmware to enable
the GoodFET41 to send falling edges from its GPIO pin to
the RST/NMI pin of the GoodFET42-JTAG.

To disassemble target firmware binaries and perform static
analysis on them, we used the IDA Pro interactive disas-
sembler. We also wrote IDAPython scripts for IDA Pro to
automate the static analysis of firmware binaries.

9. SPECIFIC EXPLOITS

In this section, we describe two IOP exploits (a.k.a. IOP
programs) that utilize the primitive types described in Sec-
tion 7. The targets of these attacks are simple MSP430
firmware images that we created specifically to allow these
exploits to work; we later show how these can be combined
into an actual “bug door” in common, working firmware. In
all three examples, we use the LED on the GoodFET42-
JTAG as a simple output mechanism to indicate the success
of the exploit.

9.1 State accumulation exploit

An interrupt handler that predictably and incrementally
modifies CPU state without saving or restoring it could be
used to accumulate state. If the target program behavior
can be influenced by this state, timed invocations of the
interrupt handler could be used to control the program.

1. RESET HANDLER:

2. mov.w #0x13DA, R1

3. mov.w #0x5AE0, &0x120

4. mov.w #0x0, &0x200

5. bic.b #0x1, &0x0021 @
6. spinl:

7. bis.b #0x10, &0x000

8. cmp.w #0x2, &0x200

9. jnz spinl
10.
11. bis.b #0x1, &0x0022 R®
12. bis.b #0x1, &0x0021 @) (5)
13. spin2: NMI

[OAQ) 14. jmp spin2

15.
16. NMI HANDLER:
17. bic.b #0x10, &0x002 @) (6)
18. add.w #1, &0x200
19. reti

Figure 2: State accumulation exploit

The assembly source code of a simple firmware that con-
tains such a vulnerability can be found in Figure 2. Num-
bered arrows represent actual instruction execution flow thro-
ugh the code, as caused by our crafted interrupts.

This IOP exploit uses a state accumulation primitive (line
18) in the NMI interrupt handler to cause the firmware to
break out of an infinite loop (lines 6-9) and switch on its
LED (lines 11-12). The IOP exploit takes place as follows:

(1) The SP (R1) is initialized at line 1, and the micro-
controller is configured trigger NMI interrupts upon
receiving a falling edge on the RST/NMI pin at line 2.
The memory location that will be used to accumulate
state, 0x200, is cleared at line 4. The firmware then
spins in lines 6-9, waiting for 0x2 to be accumulated
in 0x200.

(2) An NMI is triggered, which invokes the NMI handler
at line 16.

(3) The NMI handler clears the NMI interrupt flag at line
17 to prevent a re- invocation of the NMI handler, and
then accumulates 0x1 in 0x200.

(4) The processor returns from the NMI interrupt to the
spin loop. NMI is re-enabled at line 7 by setting the
NMI interrupt bit. The firmware spins again, since
0x200 contains the value 0x1

(5) An NMI is triggered, which invokes the NMI handler
at line 16.

(6) NMI handler is invoked, accumulating another 0x1 in
0x200.

(7) The processor returns from the NMI interrupt to the
spin loop.



(8) This time, 0x200 contains the value 0x2, so the firmware
breaks out of the first spin loop, turns on the LED at
lines 11 and 12, and spins at the second spin loop from
lines 13-14

This exploit was designed to be carried out without any
specific interrupt timings required. Simply triggering two
NMIs would cause the GoodFET42-JTAG to turn on its
LED.

9.2 Loop execution exploit

Besides containing state accumulation primitives, an in-
terrupt handler may contain other useful primitives, such as
one that writes to a useful memory address. Proper tim-
ing and nesting of interrupts could possibly allow both state
accumulation and the writing of the accumulated value to
other locations in memory, to be used in combination to
affect the target.

1. RESET HANDLER:
2. mov.w #0x13DA, R1
3. mov.w #0x5AEQ0, &0x120
4. mov.w #0x0, &0x200
5. mov.w #0x0, &0x202
©) 6. bis.b #0x1, &0x0022
7. bic.b #0x1, &0x0021
8. bis.b #0x10, &0x000
9. clr.w R11
10. led blink loop:
11. add.w #0x1, R11
12. call BLINK LED
ang 13, cmp.w R11, &0x200 (2) NMI
14. jnz led blink loop
15. spin:
a3 16. jmp spin
17.
18. NMI_HANDLER:
19. bic.b #0x10, &0x002
@O\ 0. bis.b #0x10, &0x000 60
21. add.w #0x1, &0x202
O anf" 22, mov.w &0x202, &0xzool(8),(w)'(12)
23. reti

Figure 3: Loop execution exploit

The assembly source code of a simple firmware that con-
tains such a primitive can be found in Figure 3. The in-
terrupt handler in this firmware contains both a state accu-
mulation primitive (line 21) and a memory write primitive
(line 22). Using a series of well timed, nested interrupts,
this IOP program first accumulates state, then writes it to
a destination memory location that controls the number of
times the firmware blinks its LEDs. The IOP exploit takes
place as follows:

(1) The SP (R1) is initialized at line 1, and the micro-
controller is configured trigger NMI interrupts upon
receiving a falling edge on the RST/NMI pin at line
2. The memory locations that will be used for state
accumulation and the final memory write, 0x200 and
0x202 are cleared in lines 4 and 5. The LED is turned
off (if it is already on) from lines 6-7, and the NMI in-
terrupt is enabled by setting the NMI interrupt enable
bit at line 8. Finally, the register used as a counter for
the LED blinking loop from lines 10-14 is cleared.

(2) An NMI is triggered, which invokes the NMI handler
at line 18.

(3) The NMI handler clears the NMI flag at line 19, and
re-enables NMIs at line 20 to allow for NMI nesting.
It then accumulates 0x1 in 0x202 at line 21.

(4) Another NMI is triggered, which invokes the NMI han-
dler at line 18.

(5) Step 3 is repeated.

(6) Another NMI is triggered, which invokes the NMI han-
dler at line 18.

(7) Step 3 is repeated.

(8) The state accumulated in 0x202 (a value of 0x3) is
written to 0x200.

(9) The firmware returns to line 21, where the nested NMI
was triggered.

(10) Step 8 is repeated. Repeating the memory write is es-
sentially a nop, since neither the source or destination
has changed.

(11) Step 9 is repeated.

(12) Step 8 is repeated. Repeating the memory write is es-
sentially a nop, since neither the source or destination
has changed.

(13) The firmware returns to line 10, where the first NMI
was triggered.

(14) The LED blinks as many times as the value stored in
0x200 (i.e. 3 times). The firmware then spins from
lines 15-16.

This IOP program requires precise timing of nested NMIs
to work. Repeating steps 3-4 an arbitrary number of times
would allow the attacker to cause the GoodFET42-JTAG to
blink its LED an arbitrary number of times.

9.3 Stack growing exploit

All MSP430 interrupt handlers are essentially stack-grow-
ing primitives. The invocation of an interrupt handler itself,
as described earlier, causes the stack to grow by four bytes
since the SR and PC are pushed onto the stack. If an inter-
rupt could be nested (i.e., invoked while still executing its
handler), the interrupt handler itself could be seen as a state
accumulation tool that can decrement SP by 4 an arbitrary
number of times.

The MSP430 has a linear memory layout, and the stack
uses RAM, which precedes ROM in a higher address range
(see Figure 4). If the stack was grown deep enough (i.e. to-
wards lower addresses) by repeated invocations of the afore-
mentioned interrupt handler until the stack reaches ROM,
the push instructions executed by the microcontroller will
decrement SP without actually writing to top of the stack—
since ROM cannot be written to. Consequently, SP can be
made to point to any arbitrary word in ROM. Upon execu-
tion of the next ret or reti instruction, a word from ROM
will be loaded into PC, thereby redirecting control flow to
the code that this word points to.

The hard and soft entry points for the MSP430’s Boot-
strap Loader (BSL) are stored in ROM at 0xC00 and 0xC02
respectively. As Goodspeed showed in [11], entering the BSL
at its soft entry point without clearing the password check
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Figure 4: MSP430F2618 16-bit memory map

bit in R11 allows the attacker to execute privileged BSL op-
erations, such as reading out its firmware. Nesting interrupt
handler invocations at a point in firmware where the bits in
R11 are set would therefore allow an attacker to enter the
MSP430 BSL with administrative privileges.

1. RESET HANDLER:
2. mov.w #0xCOC, R1
3. mov.w #0x5AE0, &0x120

S 4. mov.w #OxFFFF, R11
5. bis.b #0x10, &0x000
6. spin:
7. jmp spin
8. () NMI
9.
10. NMI HANDLER:

3). (5) 11. bic.b #0x10, &0x002 ), (6)

@] 12. bis.b #0x10, &0x000 NMI
13. nop
14. sp check loop:
15. cmp.w #0x0C00, R1

5] ENE jnz sp check loop

17. bis.b #0x1, &0x0022
18. bis.b #0x1, &0x0021
19. reti

Figure 5: Stack growing exploit

The assembly source code of a simple firmware that con-
tains such a vulnerability can be found in Figure 5. This
IOP exploit first sets all bits in R11, then grows the stack
using nested NMIs until it is deep enough for the next reti
instruction to pop the BSL soft entry point into PC. The
IOP exploit takes place as follows:

(1) The SP (R1) is initialized at line 1, and the micro-
controller is configured trigger NMI interrupts upon
receiving a falling edge on the RST/NMI pin at line 2.
All bits in R1 are set at line 4, and NMIs are enabled
at line 5. The firmware then spins at lines 6-7.

(2) An NMI is triggered, which invokes the NMI handler at

line 10. Causing SP to be decremented by two words to
0xC08. PC and SR are not actually written to memory,
since SP is pointing to ROM.

(3) The NMI handler clears the NMI interrupt flag at line
11, and then re-enables NMIs by setting the NMI in-
terrupt enable bit at line 12.

(4) An NMI is triggered, causing SP to be decremented by
two words to 0xC04.

(5) Step 3 is repeated.

(6) An NMI is triggered, causing SP to be decremented by
two words to 0xCO00.

(7) Step 3 is repeated.

(8) Since SP is now 0xC00, the firmware does not spin
in the loop from lines 14-16, and instead proceeds to
turn on the LED at lines 17-18 and execute the reti
instruction at line 19. This first pops the word in ROM
at 0xC00 into SR, then the word in ROM at 0xC02 (i.e.
the BSL soft entry point) into PC. The microcontroller
is therefore starts executing its BSL with full privileges
(since the password check bit in R11 is set).

This exploit was designed to be carried out without any
specific interrupt timings required. Simply triggering three
NMIs would cause the GoodFET42-JTAG to turn on its
LED and enter the BSL with full privileges. However, even
without the loop checking the value of SP (lines 14 to 16),
this exploit is still possible to perform if the NMIs in step 2,
4, and 6 are properly timed.

10. PLANTING A BUGDOOR

An attacker able to read and modify target firmware source
code could introduce minimal changes that would leave the
target vulnerable to IOP attacks (i.e. leave a “bugdoor” in
the firmware). To demonstrate this, we insert a bugdoor
into TinyOS [32], an open source operating system target-
ing low-power wireless embedded systems. Since TinyOS
was designed to be lightweight, there is no common kernel
running in the background of each TinyOS program. In-
stead, TinyOS programs are compiled specifically for the
target device along with the operating system abstractions
required for the program to interface with device hardware.
By planting the bugdoor into a TinyOS MSP430 interrupt
handler, all MSP430 devices running TinyOS applications
that support such an interrupt would be made vulnerable to
IOP attacks.

We added two additional lines of code to the USART1
receive interrupt handler generated for the MSP430F1611
on the TelosB mote that makes the interrupt handler re-
entrant, as shown in Figure 6. This change transforms the
USART1 receive interrupt into an unbounded stack growing
primitive that can be used to perform the stack growing
exploit described in Section 9.3.

The disassembled binary of a TinyOS application (Mul-
tihopOscilloscope) compiled for a MSP430 device (TelosB)
target compiled with source code modification contains four
additional lines of assembly (from 0xA3D2 to 0xA3D8) in its
interrupt handler, as shown in Figure 7.

This bugdoor, which enables privileged access to the MSP-
430 BSL, required the addition of a mere two lines of code.



TOSH_SIGNAL (UART1RX_VECTOR) {
uint8_t temp = U1RXBUF;
WRITE_SR( READ_SR | SR_GIE); //+set GIE
ME2 |= URXE1; //+set USART1RX IE
signal Interrupts.rxDone(temp);

Figure 6: Modified TinyOS source code

A3C6 .def __isr_3

A3C6 __isr_3:

A3C6 push.w R15

A3C6 ; sig_UART1RX_VECTOR
A3C8 push.w R14

A3CA push.w R13

A3CC push.w R12

A3CE mov.b  &7Eh, R14

A3D2 mov.w SR, R15 ; tmp = READ_SR
A3D4 bis.w  #8, R15 ; tmp | SR_GIE
A3D6 mov.w R15, SR ; SR = temp
A3D8 bis.b  #10h, &5 ; ME2 |= URXE1

Figure 7: Disassembly of binary produced by modi-
fied TinyOS source

This additional code is not obviously malicious, will unlikely
be flagged as suspicious by static analyzers, and it will likely
be passed off as a benign error if discovered by hand. This
small, malicious change could conceivably be pushed to the
TinyOS source tree, and if it was, would expose the many
embedded MSP430 devices that use TinyOS to the stack-
growing exploit.

11. IOP BUGDOORS IN THE WILD?

Now that we showed a novel technique for “bugdooring”
firmware by injecting them with synthetic vulnerabilities ex-
ploitable by IOP, we can ask: do such vulnerabilities or back-
doors actually occur in the wild?

Our answer for now has to be, “we looked, but we haven’t
spotted any yet.” In the spirit of good science, even though
our search attempts were inconclusive, we finish with de-
scribing our tools and methods, and hope that they will help
other researchers who might be interested in IOP attacks.

11.1 Static analysis

To look for potential IOP programs in actual MSP430
firmware, we attempted static analysis of the firmware of five
MSP430-powered devices: EZ430U, EZ430URF, FET430UIF,
MSP430FET, and GoodFET. We did this manually using
IDA Pro and also added some automation using IDAPython
scripts and mspdebug functions that we wrote.

11.1.1 Manual examination in IDA Pro

In the firmware binaries we examined in IDA Pro, inter-
rupts were not re-enabled within interrupt handlers them-
selves, therefore preventing the nesting of interrupts and pre-
cluding the stack-growing attack described in Section 9.3.
Moreover, registers and memory always seemed to be prop-
erly set before use, therefore making state accumulation at-
tack described in Section 9.1 unlikely. However, it was clear
that interrupt handlers did not completely save and restore
CPU state before and after execution, which meant that

most interrupt handlers probably modified CPU state in
some way after each invocation.

The following describes the static analysis tools we wrote
to automate looking for potential IOP programs. None of
these scripts/programs fully automated the IOP program
discovery and payload creation process; they were written
to automate certain portions of the static analysis process
and to narrow down segments of code/interrupt handlers
that might allow for the creation of an IOP program.

11.1.2  Unset register/memory use scanner

This is an IDAPython script that searches for instances
where a register or memory address is used to affect state
or program behavior without first setting it. For each in-
struction that uses a register/memory address as the source
operand in an instruction that redirects control flow (e.g.
jmp, call) or performs a write to a register/memory (e.g.
mov, add, push), this script searches up to n instructions
backwards (where n is provided by the user)—including all
possible conditional branch paths to that instruction—to
check if that source register/memory address is set (e.g. by a
mov or clr instruction). This tool is meant to identify regis-
ters/memory addresses that might affect program behavior
if their state is modified or accumulated.

11.1.3 Brute-force search

This is an mspdebug function we implemented specifically
for the simulator module. Given a certain register value
pair (R, V), this program performs a brute-force search of
the space of possible CPU states, executing all possible se-
quences of timed interrupts up to n steps into the program
(where n is provided by the user). For each of these CPU
states the program reaches, if register R contains the value
V, the program terminates and reports that this CPU state
is reachable. Otherwise, the search continues until all pos-
sible interleavings of up to n steps into the program are
searched, and reports that such a state cannot be found.
We define a step as either a instruction in the target pro-
gram or the execution of an interrupt handler (assumed to
be atomic and thus counted as a single step). In theory,
this search would be able to determine whether it is possi-
ble for a program and its interrupts to put the processor in
a “bad”, exploitable state. For example, this tool would be
able to check if it is possible for SP(R1) to be set to 0xCO0
during the execution of an MSP430 program, and therefore
determine whether the program is vulnerable to the stack
growing exploit described in Section 9.3.

However, given the fact that the space of possible CPU
states grows exponentially as n increases, this brute-force
search took long amounts of time for even modest values of
n; brute-force searching entire firmware binaries was far out
of our reach.

Moreover, the latest version of mspdebug as of the time
of this study (version 0.22) did not support the MSP430X
extended instruction set, which some of the target firmwares
(e.g. GoodFET) utilize. Since mspdebug could not emulate
the behavior of the MSP430 on these instructions, our tool
was unable to accurately search the space of possible CPU
states in these firmwares.

11.1.4 Interrupt state-change analyzer

This is an mspdebug function we implemented specifically
for the simulator module to determine the state changes in-



duced by the execution of a given interrupt handler at any
given point in the program. This function saves the state of
the virtual MSP430 CPU before executing the interrupt, ex-
ecutes it, compares the resultant state with the saved state,
and prints all the differences in memory and register val-
ues to screen. This tool is meant to make understanding
the side-effects of interrupts easier, and thus allow interrupt
handlers potentially useful in IOP to be easily identifiable.

As expected, most interrupt handlers found in the tar-
get firmwares changed modified CPU state without restor-
ing it. However, most the state change induced by the in-
terrupt handlers tended to vary depending on where in the
target program the interrupt handler was invoked, as well as
how many consecutive times the interrupt handler was in-
voked. For example, some interrupt handlers only induced
state changes after their first invocations, and did not in-
duce further state changes on subsequent, consecutive invo-
cations. In the several cases we discovered where state is
either accumulated or changed in a register/memory loca-
tion, we either found that this register/memory location is
only used internally within the handler (e.g. a counter vari-
able), or could not find—by hand or with the help of the
Unset Register/Memory Use Scanner—instances where this
register/memory was used elsewhere without being set.

Moreover, as mentioned in Section 11.1.3, mspdebug does
not support the MSP430X extended instruction set. This
tool was therefore unable to accurately determine the state
changes induced by interrupt handlers that use instructions
unique to the MSP430X architecture.

11.2 Hardware analysis

With the help of the FET430UIF, we were able to control
the MSP430F2618 and examine CPU state via the JTAG
protocol.

We needed to check if MSP430’s registers could potentially
be used to accumulate state across resets. This could be
possible if the registers were not cleared or loaded each time
a power-on reset or reset interrupt was trigger. Since the
MSP430 manual [30] only explicitly states the values SR
and PC take after resets, we needed to observe CPU states
across resets in order to determine whether or not the other
registers are loaded or cleared after each reset.

A limitation of using the JTAG protocol to debug the
MSP430 is that a JTAG reset is performed each time the
microcontroller is taken under and released from JTAG con-
trol.[31] Therefore, the CPU state displayed upon entering a
JTAG “session” in mspdebug is that after a JTAG reset, not
after a “true” reset interrupt triggered by a signal edge on
the RST/NMI pin. The former is different from the latter
in that the former is triggered by signals sent over JTAG
interface pins (TDO, TDI, TMS, and TCK) rather than by
a signal edge on the RST/NMI pin. While documentation
states that CPU state is the same after either reset is per-
formed, we suspected that this claim might not hold.

In order to bypass this limitation, we wrote custom firmware

that writes all register values to fixed locations in memory
immediately after the reset interrupt handler is invoked, so
that they could be read out in a subsequent JTAG debug-
ging session.

Using this custom firmware, we found that the MSP430F2-
618 does indeed load fixed values into its registers (other
than PC and SR) on each reset triggered by an edge on the
RST/NMI pin.

These values were generally predictable, though we occa-
sionally saw them vary between our experimental sessions.
However, it appears safe to assume that fixed values are in-
deed loaded into registers between resets, therefore prevent-
ing state accumulation in registers across multiple resets.

12. FUTURE WORK

Future work should focus on generalizing and fully au-
tomating the IOP program discovery process. The first step
to achieving this would be to compiling a formal catalog of
IOP “gadgets”. This would provide direction for finding the
building blocks needed to construct IOP programs.

The next step would be to fully automate the IOP static
analysis process. The scripts and programs that we have
written only semi-automate the static analysis process; fur-
ther research should focus devising algorithms to locate IOP
gadgets in target program binaries reliably and efficiently.
One possible avenue to pursue is using SMT solvers to search
the CPU state space, rather than the inefficient brute-force
search tool we developed for this study. SMT solvers have
helped analyze various kinds of vulnerabilities and exploit
programming models [33]; IOP seems a promising applica-
tion for them.

This application would, of course, require a model of the
target ISA and of its interactions with interrupts, a sig-
nificant investment; once this is done, however, using an
SMT solver might yield a feasible way to search and query
the states achievable through the triggering of interrupts.
Such fully automated analyzers would also be able to iden-
tify programs vulnerable to IOP, and alert programmers to
specific state dependencies between interrupt handler and
target code. This would allow microcontroller programmers
to better protect their code against potential IOP attacks.

Future work in IOP exploitation should also aim to con-
struct IOP attacks that assume no access to the any part of
the firmware on the target device or similar devices. Such
attacks might infer the behavior of interrupt handlers purely
by observing their side-effects on CPU state, rather than re-
lying on analyzing disassembled binaries. Successfully achiev-
ing this stronger form of an IOP attack would future empha-
size the significance of this exploit programming model to
microcontroller security.

13. CONCLUSION

We have illustrated the concept of interrupt-oriented pro-
gramming and have demonstrated synthetic examples of firm-
ware code where IOP programs that achieve unintended
computation on a microcontroller could be constructed. More-
over, we have shown that these synthetic exploits could be
planted as bugdoors into commercially deployed firmware,
and have built tools that will help further researchers dis-
cover and explore IOP programs in MSP430 firmware.
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