
c© 2014 Carmen Cheh

THE CYBER-PHYSICAL TOPOLOGY LANGUAGE: DEFINITION AND
OPERATIONS

BY

CARMEN CHEH

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2014

Urbana, Illinois

Adviser:

Professor William H. Sanders

ABSTRACT

As the number of security incidents and sophistication of those attacks increase, it is diffi-

cult to properly detect and diagnose malicious behavior. We conjecture that detection and

diagnosis could be facilitated by an online world view that maintains information about the

ability of a system to perform its intended function. We have thus developed the Cyber-

Physical Topology Language (CPTL) to represent, exchange, and analyze information about

a system in a dynamic fashion. In this thesis, we define a CPTL data model to represent

cyber-physical assets within a system and the relations among them. We also define opera-

tions on CPTL that extract features of the system by generating a new CPTL data model

that differs from existing CPTL data models in terms of topological, semantic and property

changes. We then show how to integrate heterogenous data sources and detect intrusions

by incorporating this model into a feedback loop. Finally, we show the applicability of our

approach in an enterprise setting.

ii

To my parents, for their love and support.

iii

ACKNOWLEDGMENTS

I would like to thank my adviser, Prof. William H. Sanders, for his technical advice, encour-

agement, and support for my project. His guidance was an integral part of the success of

this research. I would also like to thank Dr. Gabriel Weaver, who spent countless hours with

me brainstorming, giving insights and advice, and pushing me to work even harder. I also

thank Brett Feddersen, who helped me with implementing parts of my work and giving me

advice about programming in general. Many thanks go to Jenny Applequist, who edited my

horrible English in an insanely short amount of time. As a result, my English has greatly

improved.

I thank the members of the PERFORM group, who have been a constant encourage-

ment and source of joy. In particular, I thank Ahmed Fawaz, Uttam Thakore, Ken Keefe,

Atul Bohara, Ron Wright, Dr. Robin Berthier, Varun Badrinath Krishna, David Huang,

Mohammad Noureddine, Michael Rausch, and Benjamin Ujcich.

Last but not least, I thank my father and mother for their support and belief in me. In

particular, I’m especially grateful to my mother, who flew to the U.S. to accompany me

during the time of this effort, and had to endure the harsh, bitter winter of Illinois. I’m

grateful to my father, who was always there to listen to my complaints.

This material is based in part upon work supported by the Army Research Office under

Awards No. W911NF-09-1-0273 and W911NF-13-1-0086. Any opinions, findings, and con-

clusions or recommendations expressed in this publication are those of the author(s) and do

not necessarily reflect the views of the Army Research Office. This material is also based

upon work supported by the Maryland Procurement Office under Contract No. H98230-

14-C-0141. Any opinions, findings and conclusions or recommendations expressed in this

material are those of the author and do not necessarily reflect the views of the Army Re-

iv

search Office or the Maryland Procurement Office. Finally, this material is in part based

upon work supported by the Department of Energy under Award Number DE-OE0000097.1

1This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the United States Government
or any agency thereof.

v

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER 1 INTRODUCTION . 1
1.1 Use Case . 6

CHAPTER 2 RELATED WORK . 7
2.1 Audit Sources . 7
2.2 Intrusion Detection Systems . 8

CHAPTER 3 A CYBER-PHYSICAL TOPOLOGY LANGUAGE FOR SYSTEM
MODELING . 13
3.1 Motivation . 13
3.2 Background . 14
3.3 Cyber-Physical Topology Language . 20
3.4 Operations on CPTL . 32
3.5 CPTL-Aware Feedback Loop . 46

CHAPTER 4 IMPLEMENTATION OF OUR APPROACH 49
4.1 Data Model . 49
4.2 Inferencing . 54
4.3 Vertex Contraction . 55

CHAPTER 5 APPLICATION OF OUR APPROACH 61
5.1 General Overview of Workflow . 62
5.2 Data Sources . 63
5.3 Ontology . 65
5.4 Profiling User’s Behaviors . 70
5.5 Misuse of System Resources . 77

CHAPTER 6 EVALUATION . 80
6.1 Implementation Performance . 80
6.2 Use Case Performance . 83

vi

CHAPTER 7 CONCLUSION AND FUTURE WORK 92
7.1 Conclusion . 92
7.2 Future Work . 93

REFERENCES . 95

vii

LIST OF TABLES

3.1 List of concept names in DL. 20
3.2 List of role names in DL. 21
3.3 List of feature names in DL. 21
3.4 TBox axioms . 25

5.1 The different shades of blue indicate levels in the concept hierarchy; the
darker the shade, the higher a concept name is in the hierarchy. The
lighter entries below a concept name are members of that concept name. . . 66

5.2 The different shades of blue indicate levels in the role hierarchy; the darker
the shade, the higher a role name is in the hierarchy. The lighter entries
below a role name are members of that role name. 68

5.3 The feature names that are used in the ontology. 69

6.1 Statistics for generating views of a CPTL data model. 81

viii

LIST OF FIGURES

3.1 A multidirected graph G(V,E, h) . 16
3.2 The CPTL data model (G,K)I . 31
3.3 The original graph is given in (a). (b) shows the graph that results from

the first contraction of the vertices within the blue region. 34
3.4 The original graph is given in (a). (b) shows the transformed graph. The

labels below the vertices represent their individual name whereas the labels
below the edges represent their role name. 39

3.5 The resultant graph after application of basic vertex contraction. 40
3.6 The edges are grouped according to the S axioms, and (b) shows the

resultant graph. The non-bold labels represent the feature values of the
PrinterGroup concept. 42

3.7 Partial attribute values for each Prints edge are given in the table at the
bottom of (a). (We only show the hour of the timestamp in the table.)
(b) shows the resultant graph after the S axioms and H mappings have
been applied to the sets of edges. The table shows partial attribute values
of the final edge (hours only). 45

5.1 The general workflow of applying CPTL to a target system. The bold ar-
rows represent the offline data processing and analysis, whereas the dotted
arrows represent dynamic data flows and processing. The star-shaped icon
labeled “6” represents a reasoner that is run over the ontology. 62

5.2 The concept hierarchy used in the ontology base. 65
5.3 The role hierarchy used in the ontology base. An arrow from role A to

role B indicates that B v A. 67

6.1 Plot of time taken for vertex contraction operation vs. number of edges
incident to selected vertices for contraction. 82

6.2 Plot of time taken for verifying validity of CPTL data model vs. number
of edges in the CPTL data model. 82

6.3 Histogram of time complexity of generating axioms that baseline writes to
files with a weekly update rate. 84

6.4 Histogram of time complexity of generating axioms that baseline writes to
files with an individual write update rate. 85

6.5 Histogram for time complexity of detecting anomalous writes to file. 86
6.6 False negative rate of detecting anomalous writes. 87

ix

6.7 False positive rate of detecting anomalous writes. 87
6.8 Histogram of time complexity of generating axioms that specify normal

printing behavior. 88
6.9 Histogram for time complexity of detecting illegal print jobs. 89
6.10 Plot of time taken for updating CPTL data model vs. number of edges in

CPTL data model. 90

x

CHAPTER 1

INTRODUCTION

Over the past decade, the number of security incidents has been growing steadily. CERT

reports a total of 60, 463 security incidents in 2013 compared to 53, 723 incidents in 2012 [1].

The volume of attacks that exploit a zero-day vulnerability increases by up to 5 orders of

magnitude after disclosure of the vulnerability [2, 3]. Security devices are widely deployed in

systems to prevent and detect those attacks. However, attackers are still able to gain access

and compromise the confidentiality, integrity, and/or availability of systems. According

to a 2012 report, even purpose-built intrusion detection systems detect just 5% of known

intrusions into systems of larger organizations. In contrast, manual log reviews detect 8% of

known intrusions [4].

Intrusion detection technologies are important and are often the basis for automated

response systems. However, as typically employed, the effectiveness of IDSes is limited in

two important ways.

First, IDSes usually provide a limited, siloed view of system behavior. The reason is that

they typically collect data from a single architectural layer: host, network, or application.

Host-based IDSes, such as OSSEC, collect data about events that occur on a device, such

as rootkit detection. Network-based IDSes, such as Snort, collect data about events in a

network in the form of packet captures. Finally, application-based IDSes collect specific data

about events within a particular application. We provide an in-depth analysis of those data

sources in Chapter 2.

Second, traditional IDSes output a large amount of alerts, of which many are false posi-

tives or false negatives. The numerous alerts can easily overwhelm a human administrator

trying to look for evidence of intrusions. Based on our literature review, there appear to be

1

three main types of IDSes [5, 6, 7]; signature-based, anomaly-based, and specification-based.

Signature-based IDSes detect intrusions by matching events in a system to predefined

patterns of malicious behavior and have a high false negative rate. Anomaly-based IDSes

characterize deviations from normal behavior as indications of an intrusion and typically

have a high false positive rate. Specification-based IDSes classifies events as intrusions

if the events do not match the formal specification of appropriate system behavior. If the

system evolves faster than its specification, then specification-based IDSes would produce a

high number of false alerts. Chapter 2 provides a more detailed analysis of the limitations

of each type of IDSes.

Those limitations of traditional IDSes are the motivation behind the following three re-

quirements for representing a target system to detect anomalous behavior and generate

meaningful alerts that are comprehensible by humans, and machine-actionable to facilitate

automated responses.

• The system model must be able to represent diverse types of data at different levels

of abstraction in order to avoid data silos and a limited view of system behavior.

Target systems such as enterprise systems and industrial control systems have various

components with various levels of complexity. Events, both normal and malicious,

occur at multiple architectural layers and impact system state. Therefore, the system

model must integrate heterogenous data and account for multiple levels of abstraction.

• The system model must support operations that summarize the state of the target

system in order to reduce the number of alerts that overburden end users. Therefore,

we argue that operations that analyze alerts relative to different views of a target

system can reduce alerts and provide higher-level, actionable information to network

administrators and response systems.

• The system model must be updated in a timely manner. A system model must capture

the current state of the target system. In order to realize different time requirements,

views of the target system at different levels of detail may be constructed. In this

manner, the operator or response system may adaptively tune the view of the target

system in a manner that balances detail of the model with time requirements.

2

Our contribution. We address the above requirements and goals by developing the Cyber-

Physical Topology Language (CPTL). We developed a preliminary version of CPTL which

was expressed informally in [8], and provided an example of a CPTL-related service used

for situational-aware computer networks in [9]. In this thesis, we give the formal definition

of CPTL. Although CPTL encompasses a suite of operations to process and communicate

information about systems of networked assets, in this paper we focus on the following

contributions:

• a CPTL data model that constructs different worldviews of the target system,

• a set of operations on CPTL, specifically vertex contraction, that analyzes those world-

views, and

• a feedback loop to baseline system behavior using different worldviews of the target

system provided.

We elaborate on each contribution and describe how it addresses our requirements.

CPTL data model. First, we describe the CPTL data model and its formal specification

of the target system. The CPTL data model consists of three components: a graph, an

ontology, and an interpretation. The graph describes the structure of interactions among

entities in the target system. The ontology is based on Description Logic (DL) that provides

a formal specification so that we can automatically deduce malicious behavior. Finally, the

interpretation maps the ontology to the graph so that we can select specific data sources

and relate them in a manner that explains user behavior.

The graph structure enables the CPTL data model to integrate event information across

a variety of architectural layers of the target system. We want to not only baseline systems

in terms of the behavior of individual layers but also in terms of the interactions among

those layers. The working hypothesis here is that although an attacker may be able to

compromise an individual layer’s behavior, an IDS that characterizes normal behavior in

terms of interactions among multiple layers will be much harder for an attacker to circumvent.

Ontologies and interpretation functions from Description Logics provide analysts and al-

gorithms with machine-actionable semantics that are unambiguous. Those formalisms also

3

provide a way to reinterpret the same graph and attributes to construct a new worldview

with new semantics.

The combination of graphs and ontologies allows us to incorporate additional data sources

not traditionally found in IDS systems. User behavior may be integrated into the graphical

model in addition to the traditional network and host-level information. Furthermore, inter-

actions between devices and the physical environment may also be represented and reasoned

about using our framework.

CPTL operations. Second, we introduce operations on CPTL to extract features from

the target system. An operation on CPTL is characterized by three types of changes to

the target system model: topological, property, and semantic. Topological changes affect

the structure of the graph by modifying the entities in the target system and the relations

between them. Property changes involve modifying the features of entities or features of

relations. Finally, semantic changes affect the formal description of the graph by modifying

the ontology and/or interpretation.

Now, we describe a set of operations on CPTL and their functionality. In particular, we

introduce the operations Join, Abstract, and Contract.

Join: This operation operates on two CPTL models that represent two different worldviews

of a target system. The result of the Join operation is a CPTL model that represents a

combination of the worldviews of the target system by merging entities and relations in

the views. Join is useful when we need to relate different information sources together

or update the CPTL model with new events.

Abstract: This operation takes a single CPTL model and modifies it semantically by de-

scribing the graph using a higher-level formal description. We can use the Abstract

operation to extract high-level descriptions of behavior patterns for analysis and spec-

ification.

Contract: This operation operates on a single CPTL model by taking a set of entities in the

model and merging the set into a single general entity in the resultant CPTL model.

That general entity represents the set of entities and inherits their relations as well as a

4

summary of their features. We can use Contract to generate summarized worldviews

of the target system and extract higher-level features of the graph.

In this thesis, we will focus on the Contract operation, and will only briefly describe the

other two operations (in Chapter 3). In general, these operations allow us to efficiently

query the system state for underlying patterns and dynamically update the system state.

We can also derive high-level features that are semantically related and intuitive for humans

to reason about.

CPTL-aware feedback loop. We incorporate the CPTL data model within a feedback

loop to baseline system behavior. The feedback loop consists of two stages: the offline

analysis and the online checking. We describe the two components in further detail.

Offline: We maintain a CPTL model of the target system and perform CPTL operations to

infer and corroborate state information across data sources. We also use the operations

to obtain refined behavior profiles that are based on semantic features.

Online: We add events into our CPTL representation by asserting the event as a fact in the

ontology. Then, we use existing reasoner tools to check that the ontology is satisfiable

by the events, i.e., the events fulfill the axioms in the ontology. If an event causes the

reasoner to raise an exception, we can either present the event along with the axioms

it violated to a human administrator, or automatically block the event from occurring.

We use the concept of feedback loops to increase our level of understanding of the target

system. The offline model informs the online model about appropriate behavior to enforce

by deriving axioms that are asserted in the online model. The online model informs the

offline model about changes in behavior and state. In addition, the online model provides

the offline model with feedback about false positives so that the offline model can improve

its specification of intrusions.

5

1.1 Use Case

In this thesis, we focus on malicious insiders as our threat model. Insider attacks pose a

greater threat to systems than external attacks do, because of the intimate knowledge of the

system and its defenses possessed by insiders [10]. Recent figures show that insider threats

can cause tremendous damage; for example, two recent cases involved a financial loss of more

than $1,000,000 in sales and the loss of more than $40,000,000 in documents [11]. Insider

threats also result in greater financial damage than external threats do [12]. An insider

also has legitimate physical and cyber access to the system, obviating the need to execute

complicated attacks.

Malicious insiders can be categorized into two groups: masqueraders and traitors. Those

terms have been adopted from [13]. A masquerader is an illegitimate user who steals

a legitimate user’s credentials and uses them to conduct malicious activity. On the other

hand, a traitor is a legitimate user who violates system policy in order to compromise

confidentiality, integrity, and/or availability of system assets.

In this thesis, we will look at the following insider attacks:

• Unauthorized exfiltration of data.

• Tampering with data.

• Misuse of system resources.

This thesis. In Chapter 2, we present related research efforts on IDSes and discuss their

limitations. In Chapter 3, we define CPTL and its operations, and in Chapter 4, we describe

its implementation. We apply CPTL and its operations to an enterprise use case in Chap-

ter 5, and present an evaluation of our work in Chapter 6. Finally, we conclude and discuss

future work in Chapter 7.

6

CHAPTER 2

RELATED WORK

In this chapter, we survey the current state of IDSes and their limitations. More specifi-

cally, Section 2.1 describes the sources of audit data that are used by IDSes, and discusses

the need for a formal framework that integrates heterogenous data sources to gain a more

comprehensive picture of intrusions occurring in a system. In Section 2.2, we compare the

different types of IDSes and discuss their shortcomings. We also relate existing IDSes to our

approach, and explain how our approach addresses their gaps.

2.1 Audit Sources

IDSes analyze data that have been collected in the system to find evidence of intrusions.

The data are collected from different architectural levels of the system. Based on our liter-

ature review, there appear to be three main types of data sources [14]: network, host, and

application.

Host level. Host-based IDSes collect data about events occurring in a computer system.

Events include system calls, user commands, file accesses, system events, and running pro-

cesses. This data source provides evidence of intrusions that occur within a computer system

and is vulnerable to attacks that compromise the system and tamper with the collected data.

Network level. Network-based IDSes look at network traffic within a target system to

detect intrusions. These IDSes are limited to attacks that propagate over a network, and are

unable to detect physical attacks (for example, a virus located on a thumb drive) or social

engineering attacks.

7

Application level. Application-based IDSes collect data about events occurring in a spe-

cific application. The data can be a combination of both host-level and network-level data

sources. Since the collected data are specific to an application, the IDS is tailored to detect

only intrusions that affect the application.

All three types of data sources provide important evidence of intrusions. Typically, systems

employ multiple types of IDSes that monitor the system at the different levels. However,

some attacks may manifest at all levels, but to an extent that is not detectable by individual

IDSes. So we need a unified way to correlate data at different levels to be able to detect

intrusions [15].

2.2 Intrusion Detection Systems

As mentioned in Chapter 1, there are three types of IDSes: signature-based, anomaly-based,

and specification-based. Next, we will elaborate on these types of IDSes and describe their

pros and cons.

2.2.1 Signature-based IDS

Signature-based IDSes rely on a database of signatures that describe attacks. The ability of

an IDS to detect intrusions relies solely on that signature database. The database is updated

from time to time with signatures of new attacks. The advantages of a signature-based IDS

include its low false positive rate as well as its efficiency. However, signature-based IDSes

are unable to detect unknown attacks or variants of an attack that do not follow the fixed

signature in the database.

More et al. [16] attempts to improve on the current signature-based IDSes by abstract-

ing the definition of signatures to a higher-level contextual description that is informed by

vulnerability description feeds such as CVE, CVSS, and forums. More collects data streams

from network monitors, host monitors, sensor data from other IDS modules, and security

logs. Those data streams are asserted as facts in a knowledge base. Then, a reasoner is run

8

over the knowledge base to infer whether the collected data are indications of an attack.

That approach is an improvement over existing signature-based IDSes because it can detect

variants of attacks as long as the specification in the vulnerability description feeds covers

the different variants. Furthermore, the approach combines heterogenous data sources to

get a better picture of intrusions in the system. However, it still suffers from the weakness

of signature-based IDSes, as it is unable to detect unknown attacks.

Just as in other approaches, we use ontologies to express domain knowledge and events.

In contrast with other approaches, our model also expresses the relations among entities and

is capable of describing not only signatures but also baselines and policies.

2.2.2 Anomaly-based IDS

Anomaly-based IDSes develop a baseline of normal behavior and detect intrusions by looking

at how much events deviate from that baseline. Baselines are typically created using sta-

tistical distributions, machine-learning techniques, or data mining [14]. Baselining of user

behavior is the main technique for detecting masquerader attacks [13] and is also recom-

mended by CERT [17]. Since a masquerader is an outsider, he or she is probably unfamiliar

with the legitimate user’s behavior, and his or her actions would very likely deviate from

the typical behavior of the legitimate user.

The ability of anomaly-based IDSes to detect attacks is dependent on the features and

technique used to create and update the baseline. Anomaly-based IDSes are able to detect

unknown attacks, but are known to have a higher false positive rate [7, 14, 18]. Creating an

accurate baseline and updating it over time are hard tasks. Below, we describe an approach

that attempts to provide a framework for creating baselines.

The Anomaly Detection at Multiple Scales (ADAMS) program [19] of the Defense Ad-

vanced Research Project Agency (DARPA) aims to detect and prevent insider threats

through use of large-scale data. One of the products of that program is the Proactive

Detection of Insider Threats with Graph Analysis And Learning (PRODIGAL) architec-

ture [20].

The PRODIGAL architecture detects possible insiders by using models of user activity

9

at multiple levels of abstraction [21]. The contributions of the PRODIGAL architecture

include:

• a specialized visual language called the Anomaly Detection Language (ADL) for ex-

pressing different combinations of algorithms, data, baselines, time periods, and clus-

ters;

• novel algorithms that detect anomalies by modeling different aspects of normal behav-

ior and comparing observables in a dataset to the normal behavior; and

• an application of the framework to an actual dataset consisting of monitored computer

usage activity in a business organization.

The Anomaly Detection Language (ADL) consists of components that take in data, oper-

ate on the data, and output the result of the operation. Components can be chained together

to form a pipeline of operations. Different components can perform different types of op-

erations. The operations supported are statistical anomaly analysis, group detection that

extracts communities of entities, filtering and partitioning of data into classes, aggregation

of certain data values, and normalization by scaling of data [21]. The language is meant to

be domain-independent.

In [20, 22], the PRODIGAL architecture is applied to a dataset reflecting computer usage

activity in a real business organization. The authors looked at data from various audit

sources, such as email, file accesses, login information, print jobs, visits to websites, and

Instant Messaging (IM) activity. The organization consisted of approximately 5,500 people,

and each user conducted approximately 1,000 actions per day, giving rise to 5.5 million

records per day. Data were collected over a period of two months.

The authors defined six main threat scenarios, and for each scenario, constructed an

anomaly detection algorithm that uses the ADL to combine indicators from the various

audit sources. A red team was used to augment the data with instances of insider activity.

The results obtained were promising with the highest area under the curve (AUC) being

0.979 [20].

10

We emphasize that our CPTL data model is complementary to PRODIGAL’s ADL, be-

cause CPTL focuses on modeling an evolving target system whereas the ADL models fusion

of data. Thus, we envision that CPTL could be used as a basis for representing ADL. More-

over, CPTL provides a formal definition of the domain of interest and allows for automatic

inferencing of anomalies.

It is mentioned in [23] that the key to detecting attacks lies in the inexplicability of

an event rather than its rarity. Explanations for events rely not only on the information

surrounding the events but on external data sources. We can use CPTL to explain anomalies

using additional data sources, such as the state and location of an asset or the presence of

an external event, because these sources contribute to the state of the target system. We

believe that CPTL and PRODIGAL can be combined to work in tandem, with PRODIGAL

using CPTL operations to query the target system state.

2.2.3 Specification-based IDS

Specification-based IDSes formally define appropriate system behavior and detect events

that deviate from the formal description. The ability to detect intrusions lies in the formal

specification of the system. Thus, it is essential that the formal specification be accurate and

up to date. The advantage of the specification-based IDS is that it detects any attack that

does not adhere to the definition of appropriate behavior, and thus has a low false negative

rate. This type of IDS is useful in environments that have more well-defined policies of

acceptable behavior; for example, in cyber-physical systems [24]. However, it is hard to

create and maintain an accurate specification. Next, we describe an approach that combines

specification-based and anomaly-based detection to detect malicious insiders.

Maloof et al. [25] developed a system called Exploit Latent Information to Counter Insider

Threats (ELICIT) that looks at information-use events. The events they looked at include

searching, browsing, downloading, and printing of data. Based on those events, they devel-

oped detectors that use contextual information, such as location of users and machines, to

profile users and the activity of groups of users during a specified time period. Those de-

tectors were chosen based on analysis of events in the dataset, advice from domain experts,

11

and information from publicly known insider cases.

Some of the detectors included printing of documents to a distant printer (where distance

was measured in terms of the number of floors from a user’s office to the printer), and ac-

cessing of documents that were outside a user’s social network (where the social network was

determined based on email correspondence and project assignments). Those two detectors

represented specifications of policies enforced by a system.

To evaluate the performance of ELICIT, the authors collected data from 284 days of

network traffic and abstracted the data into 91 million information-use events performed

by 3,900 users. Then, a red team developed scenarios based on publicly known insider

cases and inserted events into the dataset. The results were promising; the area under the

Receiver Operating Curve (ROC) curve was 0.92; detection rate was 0.84; and the average

false-positive rate was 0.015.

Our work provides a formal framework that could model the data and detectors used in

ELICIT. We could perform more complex analysis of the data and generate detectors that

can be automatically updated.

12

CHAPTER 3

A CYBER-PHYSICAL TOPOLOGY LANGUAGE
FOR SYSTEM MODELING

3.1 Motivation

In Chapter 1, we introduced the limitations of current IDSes and explained the need for

a formal specification of a system model. The system model represents the state of the

target system (e.g., an enterprise system, smart grid, or data center). The state of the

target system encompasses (1) cyber-physical assets, (2) users, and (3) properties of and

interactions among the assets and users. For example, in our use case in Chapter 5, we have

an enterprise system that is the target system. The state of the enterprise system consists of

(1) physical assets such as machines and printers, cyber assets such as files, and credentials;

(2) users, such as employees; and (3) employees’ accesses to files, possession of credentials

by employees, and accesses to printers for printing of files.

Thus, we define the Cyber-Physical Topology Language (CPTL) as a mechanism

to integrate and exchange diverse information at multiple levels of abstraction and perform

operations on that information to obtain useful measures. The information is represented

as a graph G(V,E) that is described by an ontology K expressed in a description logic DL.

In the following sections, we will describe the definition of CPTL and its operations. We

apply CPTL and its operations to two use cases in Chapter 5. In this chapter, we will use

a small portion of the dataset in an enterprise setting to demonstrate the syntax and usage

of CPTL and its operations.

13

3.2 Background

As mentioned previously, we have developed a representation of information in terms of

a graph, ontology, and description logic, for which we will now provide some background

information.

3.2.1 Graphical Data

With the advent of big data, many analytic techniques have been employed. Graph analytics

is a popular and important technique for sifting through big data. Graphs are well-suited to

modeling relationships among entities and thus have been used to model social networks like

Facebook, biological networks, and communication and computer systems. For example, the

Linked Data movement [26] is about connecting semantically related online entities that are

modeled as a graph.

Graphical data are both visually intuitive and allows us to leverage theoretical tools such

as graph theory for data analytics. We want to be able to process the information represented

in a graph and present a higher-level understanding of the data. In addition, we want to be

able to reason about the information at different levels of abstraction.

Graphical data are represented as a graph G that consists of vertices V and edges E.

More formally, we define G as a multi-directed graph.

Definition 1 A multi-directed graph G is an ordered triple

G = (V,E, h) (3.1)

where V is a set of vertices, E is a set of edges, and h : E → V × V is a function mapping

the edges E to an ordered tuple. We can thus refer to an individual edge as ei(v1, v2).

We represent a small portion of the dataset in an enterprise setting using a multi-directed

14

graph, as shown in Figure 3.1. The graph can be represented as G = (V,E, h), where

V = {v1, v2, . . . , v12}

E = {e1, e2, . . . , e18}

h(e1) = (v1, v4) h(e10) = (v5, v7)

h(e2) = (v2, v3) h(e11) = (v5, v7)

h(e3) = (v2, v5) h(e12) = (v9, v6)

h(e4) = (v3, v6) h(e13) = (v9, v7)

h(e5) = (v3, v7) h(e14) = (v12, v9)

h(e6) = (v7, v8) h(e15) = (v5, v8)

h(e7) = (v4, v6) h(e16) = (v11, v8)

h(e8)= (v7, v10) h(e17) = (v11, v10)

h(e9) = (v5, v7) h(e18) = (v5, v10)

The vertices V and edges E have a set of vertex attributes and edge attributes,

respectively. The attributes are used as data to infer further semantic meaning about the

graphical data as we will see in examples later in this section. The properties are represented

as functions that map a vertex (or edge) to its respective attributes. We define the following

two sets as well as the corresponding functions below.

SV : This is a set of possible vertex attribute values.

SE: This is a set of possible edge attribute values.

AV : V → SV : This is a function mapping vertices in the graph to their respective vertex

attributes.

AE : E → SE: This is a function mapping edges in the graph to their respective edge at-

tributes.

15

Figure 3.1: A multidirected graph G(V,E, h). The vertices are labeled as vi, and the edges
are labeled as ei.

16

In the following way, we can define the vertex and edge attributes for the graph in Fig-

ure 3.1 based on the dataset. The symbol “·” denotes that there is no attribute value for

that vertex or edge.

SV = 2String

SE = 2(Date,Integer,Integer,Integer)

AV (v1) = Alice AV (v7) = b.doc

AV (v2) = Bob AV (v8) = Printer1

AV (v3) = bob1 AV (v9) = Documents

AV (v4) = alice1 AV (v10) = Printer2

AV (v5) = bob2 AV (v11) = Buildingl

AV (v6) = a.doc AV (v12) = CompanyDoc

AE(e1) = (·, ·, ·, ·) AE(e10) = (2014-05-28:1PM, ·, ·, 5)

AE(e2) = (·, ·, ·, ·) AE(e11) = (2014-05-28:2PM, ·, ·, 1)

AE(e3) = (·, ·, ·, ·) AE(e12) = (·, ·, ·, ·)

AE(e4) = (2014-02-10:10AM, 50, 0, ·) AE(e13) = (·, ·, ·, ·)

AE(e5) = (2014-06-02:11AM, 10, 2, ·) AE(e14) = (·, ·, ·, ·)

AE(e6) = (2014-05-28:1PM, ·, ·, 5) AE(e15) = (2014-05-28:1PM, ·, ·, 5)

AE(e7) = (2014-02-15:4PM, 2, 0, ·) AE(e16) = (·, ·, ·, ·)

AE(e8) = (2014-05-28:2PM, ·, ·, 1) AE(e17) = (·, ·, ·, ·)

AE(e9) = (2014-10-20:3PM, 8, 10, ·) AE(e18) = (2014-05-28:2PM, ·, ·, 1)

17

3.2.2 Ontologies

Description Logics (DL) is a family of languages that represent knowledge in a formal man-

ner. DL models the relationships among entities in a domain of interest using concepts, roles,

and individual names. The domain of interest is termed the knowledge domain. Individual

names represent single entities in the domain, whereas concept names are sets of indi-

viduals, and role names represent binary relations between individuals. For example, an

individual name might be Alice and a concept name might be Person, which represents the

set of individuals that are instances of people; of which Alice is one. A role name might be

hasMachine, representing the relationship between an instance of Person and an instance

of Machine. So Alice could be related to LAPTOP-1 via the role name hasMachine.

We can represent facts about a knowledge domain in terms of axioms that are logical

statements expressing the relationships among concepts, roles, and individuals. The axioms

must hold true in any instance of the knowledge domain. For instance, we could write

an axiom that states that all instances of the Person concept are also instances of the

LivingOrganism, concept whereas all instances of Machine concept are also instances

of Non-LivingOrganism concept. That would be a subsumption axiom, which we will

discuss in more detail later.

Description logics differs from traditional databases in several ways. First, description

logics allow us to infer new knowledge from existing knowledge based on the defined axioms.

Second, description logics can handle incomplete knowledge using the Open World Assump-

tion. Under the Open World Assumption (OWA), a fact that is not explicitly stated as

true can be either true or false. For example, we can write an axiom that defines a concept

MultiMachineUser as the set of individuals who are instances of Person and are each

related to more than two instances of Machine via the role name hasMachine. Then,

under a closed world, Alice would not be an instance of MultiMachineUser. However,

under the OWA, the fact that Alice does not have any other machines is not explicitly stated,

and thus Alice may have other machines. So, Alice is an instance of MultiMachineUser

unless it is asserted explicitly that she has only machine LAPTOP-1.

Now, we define an ontology as K = (T ,A), which is expressed in a description logic

18

DL(NI,NC,NR,NF), which defines the knowledge domain of the graph G. An ontology

consists of two types of axioms: terminological axioms T and assertional axioms A. Ter-

minological axioms express the “vocabulary of an application domain” using concepts and

roles, whereas assertional axioms contain “assertions about named individuals in terms of

this vocabulary” [27]. More formally, we define the symbols used in the definition of an

ontology and description logic below.

NI: The individual names defined in the DL describe the set of possible identifiers of indi-

viduals.

NC: The concept names defined in the DL describe categories of individuals.

NR: The role names defined in the DL describes the set of possible relations between indi-

viduals.

NF: The feature names defined in the DL describes the set of possible values in a particular

concrete domain D = (∆D,PD) where ∆D is a set and PD is a set of predicate names

which refer to e.g., strings and integers.

ABox axioms: Assertional (ABox) axioms describe the properties of individuals.

TBox axioms: Terminological (TBox) axioms describe relationships between concepts and

roles.

For example, we define a description logic DL(NI,NC,NR,NF) that represents the knowl-

edge domain of the graphical data in Figure 3.1. This DL describes an enterprise setting in

terms of cyber and physical assets. The people working in the enterprise system are given

identities in the cyberworld consisting of their user names. An identity associated with a

person is termed a user account or user, for short when the context is clear. The cyber

assets in the system are a shared filesystem organized into directories, and data are stored

in files within directories. We model user access in terms of three operations on files and

directories: create, write or delete.

The components of the DL are formally given in Table 3.1, 3.2, and 3.3. The entries in

each table are highlighted with differing shades of blue indicating the hierarchy of concept

19

and role names. A darker shade implies that the concept or role name is higher in the

hierarchy, and the lighter-colored entries below it are members of the concept or role name.

NI = {Person1,Person2,

Identity1, Identity2, Identity3,

File1,File2,

Directory1,Directory2,

Building1,Printer1,Printer2, }

Table 3.1: List of concept names in DL.

3.3 Cyber-Physical Topology Language

As mentioned in Section 3.1, we aim to formally define the CPTL data model. The CPTL

data model informally consists of the following primitives:

20

Table 3.2: List of role names in DL.

Table 3.3: List of feature names in DL.

21

• a graph, which is an ordered triple consisting of a set of vertices and edges, and a

function mapping edges to endpoints. Vertices represent instances of objects in a

system, whereas edges represent the actual relationship between the objects.

• an ontology, which represents the domain knowledge. The ontology contains axioms

that assert general facts about the objects and relations among the objects in a target

system.

• an interpretation, which maps the ontology to the graph. Then, we can reason about

the graph using axioms defined in the ontology.

More formally, we define the CPTL data model as follows.

Definition 2 A CPTL data model is

(G,K)I (3.2)

where G is a graph G(V,E, h), K is an ontology expressed using description logic DL, and

I is an interpretation of G that is a model of a subset of axioms V in K.

In the next subsection, we will slowly introduce more detail about this formal definition

of a CPTL data model.

First, we want to analyze the graphical data with respect to a particular knowledge do-

main. Thus, we represent the graphical data using axioms in the ontology.

We construct ABox axioms to assert facts about the vertices and edges in the graph G.

In particular, we construct axioms to assert that each vertex is an instance of a concept

whereas each edge is an instance of a role.

ABox axioms consist of concept assertions and role assertions. Concept assertions are of

the form C(a), which implies that the individual a is an instance of the concept C. These

individuals correspond to vertices in the graph. Role assertions are of the form R(a, b), which

implies that the individual a is related to b by the role R. These roles correspond to edges

in the graph.

22

Now, we can represent G in Figure 3.1 using the following ABox axioms.1

Person(Person1) File(File2)

Person(Person2) Directory(Directory1)

Identity(Identity1) Directory(Directory2)

Identity(Identity2) Building(Building1)

Identity(Identity3) Printer(Printer1)

File(File1) Printer(Printer2)

hasIdentity(Person1, Identity2) prints(Identity3,File2)

hasIdentity(Person2, Identity1) prints(Identity3,File2)

hasIdentity(Person2, Identity3) contains(Directory1,File1)

create(Identity1,File1) contains(Directory1,File2)

write(Identity1,File2) contains(Directory2,Directory1)

prints(File2,Printer2) prints(Identity3,Printer1)

write(Identity2,File1) locatesPhysicalDevice(Building1,Printer1)

prints(File2,Printer1) locatesPhysicalDevice(Building1,Printer2)

write(Identity3,File2) prints(Identity3,Printer2)

The ABox axioms defined in the ontology deal with explicit knowledge about the individu-

als in the graph G. Explicit knowledge represents facts that have been explicitly asserted.

In the following subsection, we will discuss how to represent implicit knowledge about the

graph G. Implicit knowledge represents facts that are not explicitly asserted but rather

have been inferred based on explicit knowledge and terminological TBox axioms.

1The role prints is originally a 4-ary relation. However, our definition of CPTL data model only covers
binary relations. So, we model the role prints as three binary edges as shown in Figure 3.2.

23

3.3.1 Presenting Views of the Graphical Data

Now we are able to relate a graph to a knowledge domain. We also want to present different

views of the graphical data for different applications. For example, users in different roles

may use different views, or algorithms may be interested in different aspects of a target

system. We formalize a view of a graph as an interpretation.

In traditional description logics, an interpretation I maps the ontology to the data

in the domain of discourse, ∆I , which is a set of individuals. That mapping function (or

interpretation function) is represented by ·I . The interpretation function ·I maps each

concept name A ∈ NC to a subset AI ⊆ ∆I , each role name r ∈ NR to a binary relation

rI on ∆I , each individual name a ∈ NI to an individual aI ∈ ∆I , and each feature name

f ∈ NF to a function fI from ∆I to
⋃

1≤i≤n ∆Di .

In contrast, our data do not consist of a set of individuals. Graphical data reflect existing

relations between individuals. Those relations need to be preserved in the interpretation.

So we want to be able to map the ontology to graphical data in the form G = (V,E, h)

mentioned in Section 3.2.1. Then, the vertices V correspond to ∆I . The existence of edges

E is modeled in the ABox axioms, and these axioms can be translated to the appropriate

mapping in the interpretation function.

In addition, we want the interpretation I to be a model of a subset of axioms V ⊆ K in

the ontology K. An axiom α holds in I (or I satisfies α) if the semantics of the axiom are

satisfied by I. Then, I is a model of a set of axioms if all the axioms are satisfied by I.

In other words, a model is an “abstraction of a state of the world that satisfies the set of

axioms” [28]. In particular, V contains all the ABox axioms and a subset of TBox axioms T′

in K. We can express that more formally as I |= V, i.e., for every axiom α ∈ V, I |= α. This

restriction on the interpretation is necessary to ensure that the graphical data are consistent

with a subset of the ontology that represents the knowledge possessed by a user. Therefore,

the interpretation satisfies ABox and a subset of TBox axioms.

Explicit knowledge. The semantics of the ABox axioms that describe the graph G is de-

fined in the interpretation as follows. Concept assertions C(a) translate to aI ∈ CI , whereas

24

role assertions translate to (aI , bI) ∈ RI in the interpretation I. Thus, the interpretation I

covers the explicit knowledge expressed in ABox axioms.

Implicit knowledge. The interpretation is also able to represent implicit knowledge pos-

sessed by a user role. The implicit knowledge is expressed as a set of TBox axioms T′ ⊆ V

that is a subset of the TBox axioms in K, i.e., T′ ⊆ A where A represents the TBox axioms

in K.

TBox axioms consist of concept inclusion, concept equality, role inclusion, and role equal-

ity. The axioms are listed in Table 3.4 along with their syntax and semantics.

Axiom Syntax Semantics
Concept inclusion C v D CI ⊆ DI

Concept equality C ≡ D CI = DI

Role inclusion R v S RI ⊆ SI

Role equality R ≡ D RI = SI

Table 3.4: TBox axioms

Concept and role inclusion describe subsumption of concepts and roles, whereas concept

and role equality describe equivalence of concepts and roles, respectively. In Table 3.4,

concept C is subsumed by concept D which implies that an individual that is an instance

of concept C is also an instance of concept D. Similarly, if two individuals are related by

role R, they are also related by role S. Equivalence of concepts C and D implies that C

is subsumed by D and D is subsumed by C. Similarly, role equivalence implies that R is

subsumed by S and S is subsumed by R.

We describe the hierarchy of concepts and roles using concept and role inclusion, respec-

tively in Table 3.1, 3.2.

Person,Building,Printer v PhysicalWorld

File,Directory, Identity v CyberWorld

write, create,delete v accesses

25

The semantics of the TBox axioms reflect how the axioms are translated in the interpre-

tation. Thus, TBox axioms express additional mappings of concept names to vertices and

role names to edges.

Thus, the interpretation function ·I maps concept names A ∈ NC to a subset AI of

vertices V , role names r ∈ NR to a subset rI which is an edge in E if r appears in ABox

axioms, individual names a ∈ NI to a vertex aI ∈ ∆I , and feature names f ∈ NF to vertex

attributes.2

The ABox axioms given in the previous section can then be translated into an interpre-

tation function I as follows. If we added the axiom Person v PhysicalWorld to the set

V, then the interpretation would be modified to include ·I(PhysicalWorld)→ {v1, v2}.

∆I = {v1, v2, . . . , v12} (3.3)

·I(Person)→ {v1, v2}

·I(Identity)→ {v3, v4, v5}

·I(File)→ {v6, v7}

·I(Printer)→ {v8, v10}

·I(Building)→ {v11}

·I(Directory)→ {v9, v12}

·I(hasIdentity)→ {e1, e2, e3}

·I(locatesPhysicalDevice)→ {e16, e17}

·I(create)→ {e4}

·I(write)→ {e5, e7, e9}

·I(contains)→ {e12, e13, e14}

·I(prints)→ {e6, e8, e10, e11, e15, e18}

2We make the Unique Name Assumption (UNA) unlike traditional DL.

26

·I(Person1)→ {v1} ·I(File2)→ {v7}

·I(Person2)→ {v2} ·I(Printer1)→ {v8}

·I(Identity1)→ {v3} ·I(Directory1)→ {v9}

·I(Identity2)→ {v4} ·I(Printer2)→ {v10}

·I(Identity3)→ {v5} ·I(Building1)→ {v11}

·I(File1)→ {v6} ·I(Directory2)→ {v12}

·I(name)→ f1

·I(timestamp)→ f2

·I(numInsert)→ f3

·I(numDelete)→ f4

·I(numPages)→ f5

f1(v1) = Alice f1(v7) = b.doc

f1(v2) = Bob f1(v8) = Printer1

f1(v3) = bob1 f1(v9) = Documents

f1(v4) = alice1 f1(v10) = Printer2

f1(v5) = bob2 f1(v11) = Building1

f1(v6) = a.doc f1(v12) = CompanyDoc

f2(e4) = 2014-02-10:10AM f2(e9) = 2014-10-20:3PM f3(e4) = 50 f4(e4) = 0

f2(e5) = 2014-06-02:11AM f2(e10) = 2014-05-28:1PM f3(e5) = 10 f4(e5) = 2

f2(e6) = 2014-05-28:1PM f2(e11) = 2014-05-28:2PM f3(e7) = 2 f4(e7) = 0

f2(e7) = 2014-02-15:4PM f2(e15) = 2014-05-28:1PM f3(e9) = 8 f4(e9) = 10

f2(e8) = 2014-05-28:2PM f2(e18) = 2014-05-28:2PM

27

f5(e6) = 5 f5(e11) = 1

f5(e8) = 1 f5(e15) = 5

f5(e10) = 5 f5(e18) = 1

The graphical data can now be analyzed by a user U with respect to a particular knowledge

domain given by the ontology K expressed in DL.

Modeling edge attributes. Edge attributes and multi-edges are not modeled directly

by the ontology. Instead, we model edge attributes by using reified relations and meta-roles

to transform the description logic DL(NI,NC,NR,NF) and interpretation I(∆I , ·I) to the

description logic DL′(N′I,N
′
C,N

′
R,N

′
F) and the interpretation I ′(∆I′ , ·I′). That transfor-

mation can similarly model hyperedges as N -ary relations. Reification is the process of

representing relations as a concept instead of a role [27].

We use the most straightforward strategy that is described as a design pattern in Ontology

Design Patterns (ODP) catalog [29] as well as in World Wide Web Consortium (W3C)

Working Group Note [30]. We first transform the description logic DL(NI,NC,NR,NF) to

DL′(N′I,N
′
C,N

′
R,N

′
F) by adding concept names representing edges, role names representing

the size of edges, and individual names representing the individual edges.

For an ri ∈ NR, we construct the following additional concepts, roles, individual and

feature names in DL′. For each role name, we add a concept name that represents the role.

We add two role names that represent the outward bound edge and the inward bound edge.

Finally, we add an individual name that represents the presence of an edge. This is described

formally below.

N′C = NC ∪Ne where |Ne| = |NR|

|N′R| = 2|NR|

N′I = NI ∪Ni where |Ni| = |E|

28

ci ∈ Ne

r1i , r
2
i ∈ N′R

ei ∈ Ni

To illustrate the process, we pick an edge e5 that is an instance of the role write based

on our interpretation function defined earlier. Then, we add the following concepts, roles,

and individual names.

Write ∈ Ne

writeTo,writeFrom ∈ N′R

Write1 ∈ Ni

The additional elements in DL′ are described as follows to model the existence of an edge.

The role names are subsumed by the old role name in the following manner.

r1i , r
2
i v ri (3.4)

We add an assertion that the concept Write representing the role write must be linked to

the relata of write; i.e., Write must have exactly one relation writeTo and exactly one

relation writeFrom. The concept name is constructed as follows.

ci v(≥ 1r1i .Au ≤ 1r1i .A) u (≥ 1r2i .Bu ≤ 1r2i .B)

Finally, we modify the ABox axioms representing the graphical data. For each edge ei, we

add the concept assertion ci(ei). If the old ABox axiom contains the role assertion ri(a, b),

we transform the axiom to r1i (ei, a) and r2i (ei, b).

Thus, for the individual edge given above, we modify the following axioms.

29

Write(Write1)

writeFrom(Write1, Identity2)

writeTo(Write1,File1)

In other words, an edge can be associated with a new concept in DL′. For binary relations,

the new concept has exactly two relations; each relation is between the individuals that were

originally incident to the edge. For n-ary relations, the new concept has exactly n relations;

each relation is between the individuals that were in the ordered set related to the edge.

Thus, we recapitulate our definition of a CPTL data model (G,K)I as an interpretation

I of a graph G that is a model of a subset of axioms V in the ontology K.

The CPTL data model of Figure 3.1 is illustrated below in Figure 3.2. We can see that

edges with edge attributes are modeled as additional vertices connected to the incident

vertices of the edge. For example, edge e7 is modeled as v14 with edges e7.1 and e7.2.

Inverse mapping of ontology to data. Now that we have defined a mapping from the

ontology K to the data G using the interpretation I, we can specify the inverse mapping

from the data to the ontology. We use the inverse mapping when we perform operations on

the CPTL data model.

We define five relations as follows.

TV : V → NC: This is a relation mapping vertices in the graph to concept names, i.e.,

TV (v) = {c|v ∈ cI , c ∈ NC}.

TE : E → NR: This is a relation mapping edges in the graph to role names, i.e., TE(e) =

{r|e ∈ rI , r ∈ NR}.

TL : V → NI: This is a function mapping vertices in the graph to individual names, i.e.,

TL(v) = a where v = aI , a ∈ NI.

30

Figure 3.2: The CPTL data model (G,K)I . The vertices are labeled as vi, and the edges
are labeled as ei. The concept name of each individual vertex is indicated by the icon and
a legend is provided.

31

FV : V → NF: This is a relation mapping vertices in the graph to feature names, i.e.,

FV (v) = {f |v ∈ Domain(fI), f ∈ NF}.

FE : E → NF: This is a relation mapping edges in the graph to feature names, i.e., FE(e) =

{f |e ∈ Domain(fI
′
), f ∈ NF}, and I ′ is the transformation of interpretation I to model

edge attributes.

3.4 Operations on CPTL

An operation in CPTL creates a new data model from old data models, i.e., f : X →

(G,Kn+1)In+1 where X ⊂ (G,K1)I1× (G,K2)I2×· · · (G,Kn)In . The arity of the operation is

determined by n, where n = 1 denotes a unary operation, n = 2 denotes a binary operation,

and so on.

An operator is characterized by the (1) topological, (2) property, and (3) semantic changes

applied to the data models. Topological changes involve modifying the structure of the

graphs Gi, whereas property changes involve modifying the attributes of the vertices and

edges. Semantic changes involve modifying the ontology Ki and/or the Ii in the data models.

Current operation set. We define a set of operations on CPTL: Abstract, Join, and

Contract.

Abstract is a unary operator that takes a single CPTL model as input. We will formally

define unary operators in Section 3.4.1. The operator Abstract involves only semantic

changes; i.e., no changes are made to the graph structure. Instead, the interpretation is

modified such that the current concept, role, and feature names used to describe the graph

are replaced with concept, role, and feature names that subsume the current ones. The

resultant CPTL model represents a higher-level description of the original CPTL model.

The Abstract operation can be used to extract high-level descriptions of a graph.

Join is a binary operator that takes two CPTL models as input. The operator Join

involves topological, semantic, and property changes. Vertices and edges from both CPTL

models are merged together by a graph union operation in the resultant CPTL model. The

32

interpretation is modified to describe the combination of the two input CPTL models. We

can use the Join operation to relate different views of a target system or add new individuals

and relations to the model.

Finally, Contract is a unary operator that takes a single CPTL model as input. The

operator involves topological, semantic, and property changes. It takes a set of vertices

in the model and merges the set into a single vertex in the resultant CPTL model. That

resulting vertex represents the set of vertices and inherits their neighborhood as well as a

summary of their features. We can use Contract to generate different views of the target

system and extract higher-level features of the graph.

We introduce the Contract operator as vertex contraction in the following subsections.

3.4.1 Unary Operations

Unary operations take in a single CPTL data model (G,K)I to produce a new data model

(G′,K′)I′ . We define a certain class of unary operations that are useful in the applications

that we introduced earlier on. A unary operation is called semantic-preserving if the

interpretation of the new graph G′ is a model of the ontology that described the old graph

G, i.e., K = K′. Two ontologies K and K′ are equal if the following equations hold true.

K =< T ,A > expressed using DL(NI,NC,NR,NF)

K′ =< T ′,A′ > expressed using DL′(N′I,N
′
C,N

′
R,N

′
F) and

NC = N′C

NR = N′R

NF = N′F

T = T ′

A = A′

33

(a) Original graph. (b) Resultant graph.

Figure 3.3: The original graph is given in (a). (b) shows the graph that results from the
first contraction of the vertices within the blue region.

In other words, the interpretations of G′ and G are models of K. That implies that G′

follows the same restrictions and constraints as G. A semantic-preserving operation is useful

because it ensures that the resultant graph belongs to the same knowledge domain as the

original graph.

In the remainder of this section, we describe how vertex contraction is a semantic-preserving

operation with a useful application.

3.4.2 Vertex Contraction

Contraction operations produce a graph that is smaller than the initial graph by replacing a

subset of vertices with a single vertex while preserving incident edges. The resultant graph

differs topologically and in terms of the vertex and edge attributes. Figure 3.3 shows an

example of topological contraction.

We introduce three different types of vertex contraction: basic vertex contraction, ex-

tended vertex contraction, and extended vertex contraction with edge attributes. Basic vertex

contraction focuses on defining the supernode and its attributes, whereas extended vertex

contraction additionally defines the edges incident to the supernode. Finally, extended ver-

34

tex contraction with edge attributes expands on extended vertex contraction by additionally

defining the edge attributes. Basic vertex contraction is useful for summarization of a group

of individuals; for example, for summarizing the level of security of a subnet using levels of

patching on each machine in that subnet. We first define the basic vertex contraction op-

eration, which is a lightweight operator with less expressivity but lower complexity. Then,

we move on to define extended vertex contraction operation, which has higher expressivity

that comes at the expense of higher complexity. Extended vertex contraction is useful for

summarization of relations among a group of individuals; for example, for summarizing the

number of modifications made to a group of files.

Basic vertex contraction. Informally, a vertex contraction of a set of vertices VC in G

produces a graph G′ whose vertices and edges are identical to those of G with the exception

of vertices in VC . The set of vertices is replaced with a single vertex v′ called the supernode.

We describe the supernode in terms of its (1) topology, (2) semantic meaning, and (3)

properties. The supernode (1) is a vertex that is adjacent to the union of the neighborhood of

vertices in VC as illustrated in Figure 3.3, (2) is an instance of a concept C that is consistent

with respect to the axiom T, and (3) has attribute values that are defined as an aggregate

representation of the selected vertices’ attribute values given by the set of functions F.

The basic vertex contraction involves defining the supernode and its attributes as a func-

tion of the selected vertices for contraction. Since the vertices are intentionally selected

for contraction, the concept names of the vertices are known to be semantically related.

In addition, the supernode is assigned a single concept name that represents the group of

vertices selected. Thus, the concept name of the supernode is derived by substituting the

concept names of the selected vertices into a defined function. Similarly, the feature names

of the vertex attributes are known, because the vertices are intentionally selected for con-

traction. In addition, the supernode’s attributes represent the aggregate of the attributes of

the selected vertices. Thus, the feature values of the supernode are derived by substituting

the feature values of the selected vertices into defined functions. The supernode is assigned

feature names that represent the aggregate feature values.

We add a validity check to ensure that both (1) the supernode and edges incident to the

35

supernode and (2) the supernode’s feature names and values are also consistent with respect

to the axioms in the ontology K. Therefore, the resulting interpretation is still a model of

K. So the semantic meaning of the new graph G′ is still preserved.

The formal definition of basic vertex contraction is given below.

Definition 3 Basic vertex contraction is a function Contract(VC , (G,K)I ,T,F) =

(G′,K)I′ where VC ⊆ V (G).

Notation:

VC: The subset of vertices in the graph selected for contraction.

T: The TBox axiom describing the concept name of the supernode.

F: The function describing the feature names of the supernode and their associated values,

i.e., F maps NF to g : ({(NC,
⋃

1≤i≤n ∆Di)})→
⋃

1≤i≤n ∆Di.

N+(W): The neighborhood of vertices in W that have an outgoing edge from some vertex in

W , i.e., N+(W) = {v|ei(v1, v) ∈ E(G) and v1 ∈ W ⊆ V (G), v /∈ W}.

N−(W): The neighborhood of vertices in W that have an incoming edge from some vertex

in W , i.e., N−(W) = {v|ei(v, v1) ∈ E(G) and v1 ∈ W ⊆ V (G), v /∈ W}.

Topological changes: The resulting graph G′ is described as follows:

V (G′) = V (G)− VC + {v′} (3.5)

E(G′) = E(G)− {ei(v1, v2)|ei ∈ E(G), v1 ∈ VC or v2 ∈ VC}+ (3.6)

{ei(v′, v1)|ei ∈ E(G), v1 ∈ N+(VC)}+ {ei(v2, v′)|ei ∈ E(G), v2 ∈ N−(VC)} (3.7)

The new vertex in G′, v′, is called a supernode.

Semantic changes: The interpretation I ′ = (∆I
′
, ·I′) is constructed as follows.3

3We use the inverse mappings from Section 3.3.1 here.

36

∆I
′
= V (G′) (3.8)

·I′(c) =

·
I(c)− {v|c ∈ TV (v), v ∈ VC} where c ∈ {ci|ci ∈ TV (v), v ∈ VC} ⊆ NC

·I(c) otherwise

(3.9)

·I′(r) =



·I(r)− {ep(vi, vj)|r ∈ TE(ep(vi, vj)), vi ∈ VC or vj ∈ VC}+

{eq(v′, vj), er(vi, v′)|r ∈ TE(eq(vk, vj)) ∩ TE(er(vi, vm)),

vk, vm ∈ VC and vj, vi /∈ VC}

where r ∈ {ri|ri ∈ TE(ep(vi, vj)), vi ∈ VC or vj ∈ VC} ⊆ NR

·I(r) otherwise

(3.10)

·I′(a) =

φ where a ∈ {ai|TL(v) = ai, v ∈ VC} ⊆ NI

·I(a) otherwise

(3.11)

·I′(f) =



fI
′
: (GI = F I − (F I ∩ VC))→

⋃
1≤i≤n ∆Di ,

fI
′
(g) = fI(g)

where f ∈ {fi|fi ∈ AV (v), v ∈ VC} ⊆ NF

·I(f) otherwise

(3.12)

We assign a concept name to the supernode v′, i.e., v′ is an instance of some concept

C, such that C is consistent w.r.t. a given TBox axiom T. The axiom T is a function that

describes the relation between the concept name of the supernode and the concept names of

the vertices in VC. Then, we modify the interpretation in the following manner.

·I′(C) = ·I′(C) ∪ {v′} (3.13)

Property changes: For each feature name f ∈ Domain(F), we calculate the attribute

value of the supernode v′ using the function g = F(f). The function g takes in as argu-

ments the concept names of the selected vertices and their attribute values corresponding

37

to a particular feature name h ∈ NF that is semantically related to f . The output of g is

d ∈
⋃

1≤i≤n ∆Di. Then, we augment the interpretation in the following manner.

[·I′(f)](v′) = d (3.14)

Validity check: After assigning a concept name to the supernode and role names to the

edges incident to the supernode, we run a reasoner to verify that the resulting interpretation

I ′ is still a model of the ontology K.

Example: In our enterprise system example in Chapter 5, employees print files to printers.

When a person uses a printer other than his or her usual default printer choice, that may

signify data exfiltration. However, that assumption could result in a false positive, perhaps

if the unusual printer was used only because the default printer was not functioning. So we

use contraction to infer the status of the printers.

Our hypothesis is that if a person prints a file F to printer P1 and then subsequently prints

F to another printer, P2, it typically means that P1 was not available. We will now look at

a small snippet of the graph in Figure 3.2 and focus on the constituent print relations, along

with the people and files associated with the printing.

In Figure 3.4b, two groups of vertices are selected for contraction. We give a detailed

explanation of how multiple sets of vertices are contracted in Definition 6. Since the vertices

selected from the two groups for contraction overlap, we transform the graph as shown in

Figure 3.4b (see Definition 6 for more detail) so that the overlapping vertices (and its incident

edges) are duplicated. Each group now contains distinct vertices. To model the fact that

the duplicated vertices are the same entity, we add an edge of role name sharesC between

them where C is a filler for the concept name of the original vertex. Then, we can contract

the vertices as shown in Figure 3.4a and express the T axiom as

X v (= 1)numFiles. =count{F1,...,Fm} u(= 1)numIdentity. =count{I1,...,Ik} (3.15)

where F1, . . . , Fm ∈ VC are instances of File and I1, . . . , Ik ∈ VC are instances of Identity.

38

(a) Original graph. (b) Resultant graph after transformation.

Figure 3.4: The original graph is given in (a). (b) shows the transformed graph. The labels
below the vertices represent their individual name whereas the labels below the edges
represent their role name.

This axiom asserts that the supernode is related to exactly one numFiles feature with a

value of the count of the number of files, and exactly one numIdentity feature with a

value of the count of the number of credentials. The concept PrinterGroup is defined as

PrinterGroup ≡ (= 1)numFiles. ≥0 u(= 1)numIdentity. ≥0. So the concept of the

resulting two supernodes is inferred to be PrinterGroup.

We also define the attributes of the supernode as the number of files and number of

identities that print to the specified printer. So the function F is defined as follows.

F(numFiles) = g1

g1({(Nj
C,

⋃
1≤i≤n

∆Di)|vj ∈ VC}) = count(vj), vj ∈ FileI

F(numIdentity) = g2

g2({(Nj
C,

⋃
1≤i≤n

∆Di)|vj ∈ VC}) = count(vj), vj ∈ IdentityI

39

Figure 3.5: The resultant graph after application of basic vertex contraction.

The resulting graph is given in Figure 3.5. Using basic vertex contraction, we can profile

the workload of printers by looking at the PrinterGroup’s vertex attributes numFiles and

numIdentity. However, we can obtain more information using extended vertex contraction

and infer the state of the printer, as we will show later.

Extended vertex contraction. In addition to defining the supernode, the extended ver-

tex contraction also defines the edges incident to the supernode. The role names of the

edges, unlike those in the basic vertex contraction, are not known to be semantically related.

Instead, we can define functions that derive role names that represent a certain group of se-

mantically related role names in the ontology K. Then, we can derive the set of role names

of the edges incident to the supernode by substituting the role names of the edges into the

appropriate set of defined functions.

We describe the extended vertex contraction in an informal manner. Just as in basic vertex

contraction, the supernode is an instance of a concept C that is consistent with respect to

the axiom T. In addition, the edges incident to the supernode are an instance of a set of roles

that is consistent with respect to a subset of TBox axioms in S. We add a validity check to

ensure that (1) the supernode and edges incident to the supernode and (2) the supernode’s

feature names and values are also consistent with respect to the axioms in the ontology K.

Therefore, the resulting interpretation is still a model of K. So the semantic meaning of the

new graph G′ is still preserved.

Definition 4 Extended vertex contraction is a function

Contract(VC , (G,K)I ,T,F,S) = (G′,K)I′ where VC ⊆ V (G).

40

Notation: Refer to Definition 3 for more details.

S: The set of TBox axioms describing the role names of the edges incident to the supernode.

Topological changes: Same as Definition 3.

Semantic changes: Refer to Definition 3.

We first describe the procedure for each vertex in the neighborhood that has an outgoing

edge from VC; the same procedure applies to any vertex that has an incoming edge from VC.

For each vertex w ∈ N+(VC), we assign role names to the edges that are incident to v′ and

w. S represents a set of TBox axioms, {R1, · · · , Rk}, that describes the relation between the

role name of the edge incident to the supernode and a subset of the role names of the outgoing

edges from VC. The axioms R1 · · ·Rk are mutually disjoint; i.e., they involve disjoint sets of

roles.

We look at a subset of axioms in S to choose the role names to assign to the new edges.

The subset of axioms is determined by the role names assigned to the edges incident to w

from vertices in VC. For each axiom in that subset, say Ri, we assign a role name Y that

is consistent w.r.t. Ri to the edge eq(v
′, w). Then, we augment the interpretation ·I′ in the

following manner.

·I′(Y) = ·I′(Y) ∪ eq(v′, w) (3.16)

Property changes: Same as Definition 3.

Validity check: Same as Definition 3.

Example: We demonstrate the usage of extended vertex contraction using the previous

example of attempting to infer the state of printers. Continuing to look at the graph in

Figure 3.5, we can infer that a person has printed a file to both Printer1 and Printer2.The

evidence for this inference is that two printer groups have been used by the same user to

print the same file. This is represented in the graph by the occurrence of both a sharesFile

and sharesIdentity edge between the two printer groups. In order to perform inference

41

(a) Grouping of edges based on the S
axioms. (b) Resultant graph.

Figure 3.6: The edges are grouped according to the S axioms, and (b) shows the resultant
graph. The non-bold labels represent the feature values of the PrinterGroup concept.

upon this evidence, we construct S, as the following two axioms.

X ≡ sharesFile u sharesIdentity (3.17)

X ≡ prints (3.18)

We define changePrinter as sharesIdentityusharesFile, which represents the occurrence

of both edges. The axiom S1 in Equation (3.17) means that the role name of the resulting

edge is changePrinter when both sharesFile and sharesIdentity edges exist and if only

one of either sharesFile and sharesIdentity exist, then the role name of the resulting edge

takes on the existing edge’s role name. Since both edges exist, the role name of the resulting

edge is changePrinter.

The axiom S2 in Equation (3.18) means that we group edges that are instances of prints

and assign the resulting edge a role name of prints. The set of edges selected by the two

axioms is shown in Figure 3.6a.

The resulting graph is given in Figure 3.6b. We can now infer automatically that a person

printed a file to the two printers. However, we cannot infer from this graph which printer

was unavailable, because the information at hand only tells us that one of the two printers

was unavailable. We can use contraction with edge attributes (which we will show later) to

inform us about the order in which the file was printed to the printers.

42

Vertex contraction with edge attributes. In the previous paragraphs, we defined the

basic and extended versions of vertex contractions. Both definitions covered the vertex

attributes of the supernode. However, if the data model (G,K)I models edge attributes as

well, then we need to specify how the edge attributes differ in the contracted data model

(G′,K)I′ .

The basic vertex contraction focuses on presenting a higher abstracted view of the group

of selected vertices. However, it does not require maintenance of the attribute values of the

edges incident to the group of vertices. Thus, we consider edge attributes only in the context

of extended vertex contraction.

Much as in extended vertex contraction, we do not know in advance the role names and,

by extension, the feature names of the edges. Thus, we adopt an approach similar to that

of extended vertex contraction by associating the functions for calculating the aggregate

attributes with an axiom α in S. Thus, if an axiom α is used to deduce a role name for

the edge, the feature values of the role name are derived by substituting the feature values

of the selected edges into defined functions. The role name is assigned feature names that

represent the aggregate feature values.

We modify Definition 4 in the following manner to create the following definition.4

Definition 5 Extended vertex contraction with edge attributes is a function

Contract(VC , (G,K)I ,T,F,S,H) = (G′,K)I′ where VC ⊆ V (G).

Notation: Refer to Definition 4 for more details.

VC: The subset of vertices in the graph W selected for contraction.

VR: The set of vertices representing edges incident to the selected vertices in W .

H: A set of tuples (α,J) where α ∈ S and J is a function describing the feature names of

the edge and their associated values. That is, J maps NF to g : {(NC,
⋃

1≤i≤n ∆Di)} →⋃
1≤i≤n ∆Di.

4In this definition of extended vertex contraction with edge attributes, the description logic DL and
interpretation I have already been transformed to model edge attributes in the manner described in Sec-
tion 3.3.1.

43

N+(W): The neighborhood of vertices in W that have an outgoing edge from some vertex in

W , i.e., N+(W) = {v|ep(v1, d), eq(d, v) ∈ E(G) and v1 ∈ W ⊆ V (G), v /∈ W}.

N−(W): The neighborhood of vertices in W that have an incoming edge from some vertex

in W , i.e., N−(W) = {v|ep(v, d), eq(d, v1) ∈ E(G) and v1 ∈ W ⊆ V (G), v /∈ W}.

Topological changes: Same as Definition 4.

Semantic changes: Refer to Definition 4 for more details.

We first describe the procedure for each vertex in the neighborhood that has an outgoing

edge from VC; the same procedure applies to any vertex that has an incoming edge from VC.

For each vertex w ∈ N+(VC), we use S to assign concept names (representing roles) to the

new individual vertices representing ei(v
′, w).

Property changes: Refer to Definition 4 for more details.

Then, we determine the edge attributes to be assigned to ai. The axiom Ri is mapped

to the corresponding tuple in H to obtain the corresponding function J. For each element

f ∈ Domain(J), we calculate the attribute value of ai using the function g = J(f). The

function g takes in as arguments the role names of the selected edges and their attribute

values corresponding to a particular feature name h ∈ NF that is semantically related to f .

The output of g is d ∈
⋃

1≤i≤n ∆Di. Then, we augment the interpretation ·I′ in the following

manner.

[·I′(f)](ai) = d (3.19)

Validity check: Same as Definition 4.

Example: We continue with the previous example of inferring the state of printers and

demonstrate the usage of vertex contraction with edge attributes. We can determine the

order of the printing events by looking at the timestamp of the prints edges between the

two PrinterGroup vertices. We want to determine the times of the first print jobs that

are sent to the two printer groups. Then, we can determine the printer that is unavailable

44

(a) Graph after contraction without
changes to edges. (b) Resultant graph.

Figure 3.7: Partial attribute values for each Prints edge are given in the table at the
bottom of (a). (We only show the hour of the timestamp in the table.) (b) shows the
resultant graph after the S axioms and H mappings have been applied to the sets of edges.
The table shows partial attribute values of the final edge (hours only).

as the head vertex of the edge with the lowest time. So we define H as a set of two tuples

(S1,J1) and (S2,J2), where J1 and J2 are defined as follows.

J1 = φ

J2(timestamp)→ g1

g1({(Nj
C,

⋃
1≤i≤n

∆Di)|vj ∈ VR}) = mintimestamp{timestamp(v1), . . . , timestamp(vk)}

where |VR| = k.

The mapping J1 defines the edge attributes for axiom S1, which is the changePrinter

edge. J1 is a null mapping, which means that there are no feature names associated with

the edge. The mapping J2 defines the edge attributes for axiom S2, which is the prints

edge. J2 calculates the feature value for timestamp as the minimum timestamp value in

the group of edges.

The resulting graph is shown in Figure 3.7b. We can see that the Prints1 edge from

PrinterGroup1 to PrinterGroup2 has a lower timestamp than the Prints3 edge from

45

PrinterGroup2 to PrinterGroup1. So we can deduce that a file was printed to

PrinterGroup2 and subsequently to PrinterGroup1. Thus, we can infer that Printer2 is

likely not working.

We can extend the vertex contraction operation to handle multiple sets of vertices,

{V 1
C , . . . , V

m
C }, which results in the creation of m supernodes. The definition of vertex con-

traction easily extends to multiple supernodes. Semantic and property changes are applied

to each set of vertices and the corresponding supernode. Topological changes differ in the

following manner.

Definition 6 Multiple vertex contraction is a function

Contract({V 1
C , . . . , V

m
C }, (G,K)I ,T,F,S,H) = (G′,K)I′ where V 1

C , . . . , V
m
C ⊆ V (G).

Topological changes: The resulting graph G′ is a smaller graph where

V (G′) = V (G)− {V 1
C , . . . , V

m
C }+ {v′1, . . . , v′m}

E(G′) = E(G)− {ei(v1, v2)|ei ∈ E(G), v1 ∈ V k
C or v2 ∈ V k

C for k ∈ [1,m]}+

{ei(v′j, v′k)|ei ∈ E(G),∃vt ∈ V k
C s.t. vt ∈ N+(V j

C) for j, k ∈ [1,m], j 6= k}+

{ei(v′k, v1)|ei ∈ E(G), v1 ∈ N+(V k
C), v1 /∈ V j

C ,∀j ∈ [1,m]}+

{ei(v2, v′k)|ei ∈ E(G).v2 ∈ N+(V k
C), v2 /∈ V j

C ,∀j ∈ [1,m]}

However, if there is a vertex that is contained by two sets, i.e., v ∈ V j
C , V

k
C , j 6= k, then we

model the sets V j
C and V k

C as containing two distinct vertices and connect the two vertices

with an edge that has a role name of shareC, where C is a filler for the concept name of the

vertex. More formally, v1 ∈ V j
C , v2 ∈ V k

C and esharesC(v1, v2) ∈ E(G) where v ∈ CI .

3.5 CPTL-Aware Feedback Loop

The goal of CPTL is to provide a formal specification of a target system. However, the state

of the target system will evolve over time because of external events. So, as mentioned in

Chapter 1, we need to update a CPTL model representation of the target system. In this

46

section, we present a framework for using CPTL and its operations in a dynamic manner to

maintain a formal specification of a target system.

The general life cycle consists of two components: the offline analysis and the online

checking.

Offline analysis. We maintain a CPTL model that represents the current state of the

target system. We use operations to query the CPTL model for appropriate data so that we

can perform analysis about the state of the system. In the context of intrusion detection,

the analysis in which we are interested concerns obtaining of behavior profiles, inference of

state information, and specification of an organization’s policies. Throughout this chapter,

we have presented small examples of the usage of vertex contraction. In each example,

vertex contraction queries a relevant portion of the CPTL model and derives a model that

represents a summary of certain features of the target system.

Online checking. We obtain system events and add them into our CPTL model by as-

serting them as facts into the ontology using ABox axioms. Then, we use an ontological

reasoner to infer the satisfiability of the ontology by the events. In the context of intrusion

detection, the ontological reasoner checks that the events satisfy the axioms that represent

appropriate behavior. If the ontology is not satisfied, then an event is indicative of malicious

behavior. The events and axioms that constitute violations can be presented to a human

administrator for further analysis or automatically blocked by the target system.

General overview. Now, we describe the information flow between the offline analysis

and online checking components. The offline analysis passes axioms that are results of data

analyses to the online checking component. The axioms enforce certain rules in the target

system that must be satisfied by new events that occur in the system. For example, the

axioms refer to appropriate behavior or signatures of attacks in the context of intrusion

detection. In Chapter 5, we will introduce various axioms that attempt to model system

policies or normal user behavior.

The online checking component updates the CPTL model with events and satisfiability

47

test results. The offline analysis will use the satisfiability test results to enhance the quality

of the data analyses. For example, in the context of intrusion detection, the online checking

will update the CPTL model with the events and axioms that were violated. The offline

analysis incorporates that feedback about false positives and tunes the detectors to classify

the events correctly. That concept of feedback loops is similar to Experience-based Access

Management (EBAM) [31], which uses feedback from audit logs to drive the enforced control

(EC) implemented in the operational access control system closer to the ideal model (IM)

that represents the true permissions for the enterprise. Therefore, our approach to intrusion

detection follows that life cycle so as to drive our detectors closer to the target function that

discriminates between appropriate and inappropriate behavior.

48

CHAPTER 4

IMPLEMENTATION OF OUR APPROACH

In Chapter 3, we introduced the Cyber-Physical Topology Language (CPTL) data model

and operations upon the data model. In this chapter, we will describe an implementation of

the CPTL data model and vertex contraction.

4.1 Data Model

Recall from Chapter 3 that a CPTL data model (G,K)I is an interpretation I of a graph

G that is a model of a subset of axioms V in the ontology K. We define a Java class

CPTLModel that represents the CPTL data model and contains data fields representing the

graph, ontology and interpretation. We describe the implementation of each component of

the data model, that is, the graph, ontology, and interpretation, in the subsequent sections.

4.1.1 Graph

We implement the multi-directed graph G as an adjacency list

TreeMap<Vertex,TreeSet<Edge>> G. The adjacency list maps each vertex v ∈ V (G) to a

list of edges ei ∈ E(G).

A vertex is implemented as a class Vertex. We implement the inverse mapping of the

ontology to data described in Section 3.3.1 by adding data fields to the class Vertex. In

particular, the relation mapping the vertex to its concept name, TV is represented as the

data field type, the relation mapping the vertex to its individual name, TL is represented

as the data field INDname, and the relation mapping the vertex to its feature names, FV is

49

represented as the keys in the data field attributes that map to their corresponding values

in AV .

An edge is implemented as a class Edge. The function h is represented as a data field

endpoints that is a list of size two. The inverse mapping of the ontology to data is imple-

mented in much as in the Vertex class.

4.1.2 Ontology

The ontology K is expressed in OWL 2 Web Ontology Language (OWL 2) and serialized

to an RDF/XML-formatted file that we name base. OWL 2 is a knowledge representation

language that is endorsed by the W3C [32, 28].

The RDF/XML file base contains a description of the concept names NC, role names

NR, individual names NI, feature names NF, and a list of TBox axioms.

We define a Java class OntologyInterface which represents the ontology K. The class

handles the creation, modification, and querying of the RDF/XML file using the OWL 2

API. A CPTLModel contains an instance of the class OntologyInterface.

4.1.3 Interpretation

In this section, we describe the process of parsing graphical data into a CPTL data model.

Graphical data are stored in an XML file that is decorated with tags that correspond to

concept names, role names, and feature names, along with their values. The node structure

of the XML file describes the edges in the graph.

For each graphical data source, e.g., file accesses or print jobs, we build a parser that

takes in an XML file and translates it into the graph G(V,E, h). Based on the graph G, we

generate ABox axioms.

We represent the subset of axioms V ⊆ K as a separate RDF/XML file smallbase that

contains a subset of the file base. The ABox axioms are added to smallbase. Then, we

generate the interpretation I by running a HermiT reasoner [33] on the axioms contained in

smallbase. The reasoner classifies the individuals into classes. For each class, we obtain the

50

list of individuals that are instances of the concept and add it to the interpretation function

·I .

The interpretation function ·I is implemented as four TreeMaps that represent the map-

pings of concept names, role names, individual names, and feature names. In particular,

IC represents the mapping of concept names, IR represents the mapping of role names, IN

represents the mapping of individual names, and IF represents the mapping of feature names.

Edge attributes

For each role name ri ∈ NR, we add a concept name ci and two role names r1i , r
2
i to the file

base. Then, we generate ABox axioms for each edge ei(a, b) ∈ E(G). The ABox axioms are

listed below.

ci(ei)

r1i (ei, a)

r2i (ei, b)

The generation of the ABox axioms is accomplished by the function generateABoxAxiom,

shown in Algorithm 1.

4.1.4 Updating the model

We can update a CPTL data model in four ways: (1) adding a vertex, (2) adding an edge, (3)

removing a vertex, and (4) removing an edge. Those update operations are implemented as

four separate functions, addVertex, addEdge, removeVertex, and removeEdge, respectively.

The update operations affect the graph G and the interpretation functions ·I . We describe

the details of each operation below.

51

Algorithm 1 The function generateABoxAxiom.

function generateABoxAxiom
for all vertices v do

Add concept assertions about vertex.
indV← getNamedIndividual(v.INDname)
vType← getOWLClassAssertionAxiom(v.type,indV)
addAxiom (vType)

Add feature assertions about vertex.
for all (f, val) in v.attributes do

vAttribute← getOWLDataPropertyAssertionAxiom(f,indV,val)
addAxiom (vAttribute)

end for

for all edges e incident to v do
Add concept assertion ci(e)
indE← getNamedIndividual(e.INDname)
eType← getOWLClassAssertionAxiom(e.type,indE)
addAxiom (eType)

**Add role assertion r1i and r2i **
startV← e.endpoints(tail)
endV← e.endpoints(head)
tailE← getOWLObjectPropertyAssertionAxiom(e.type+“From”,indE,startV)
headE← getOWLObjectPropertyAssertionAxiom(e.type+“To”,indE,endV)
addAxiom (tailE)
addAxiom (headE)

Add feature assertion about edge e
for all (f, val) in e.attributes do

eAttribute← getOWLDataPropertyAssertionAxiom(f,indE,val)
addAxiom (eAttribute)

end for
end for

end for
end function

52

addVertex The vertex to be added, v, is first added to the graph G with an empty adja-

cency list. Then, we use the inverse mappings in v to update the respective interpretation

functions by adding v to the appropriate list. In particular, TV (v), which is the vertex’s data

field type, is used as the key to reference the map IC. The keys in attributes are used to

reference the map IF. Finally, TL(v), which is the vertex’s data field INDname, is added to

the map IN.

addEdge The edge to be added, e(v1, v2), is first added to the graph G by addition of e to

v1 and v2’s adjacency list. Then, much as for addVertex, we use the inverse mappings in

e to update the respective interpretation functions by adding e to the appropriate list. In

particular, TE(e), which is the edge’s data field type, is used as the key to reference the map

IR. The keys in attributes are used to reference the map IF.

removeVertex The vertex to be removed, v, is first deleted from the graph G along with

its adjacency list. We do not remove the edges incident to the vertex, because the edges

are still used after deletion of the vertex to calculate edge attributes and role names. These

edges will be removed by the function removeEdge later. We use the inverse mappings in

v to remove v from the appropriate lists in the interpretation functions, using the same

mechanism used for addVertex.

removeEdge The edge to be removed, e(v1, v2) is first deleted from the graph G through

removal of e from v1 and v2’s adjacency list. Then, just as for removeVertex, we use the

inverse mappings in e to remove e from the appropriate lists in the interpretation functions,

using the same mechanism used for addEdge.

4.1.5 Generating Views of the Model

When we conduct analyses on the CPTL data model, we may only be interested in some

relations or individuals. Therefore, we need to generate views of the CPTL data model by

extracting sub-graphs. We implement this in the functions RetainEdge and FilterEdge.

53

RetainEdge This function takes in a set of edges, E, which represents the relations of

interest. A clone of the current CPTL data model is generated. Then, we iterate through

all the edges and remove those that are not contained in E. The cloned CPTL data model

is then returned as the view.

FilterEdge This function takes in a set of edges, E, which represents the relations that

are not of interest. Just as in RetainEdge, we generate a clone of the current CPTL data

model and iterate through all the edges. We remove edges that are contained in E and

return the cloned CPTL data model as the view.

4.2 Inferencing

We implement inferVertexType which infers the concept name of a vertex, and

inferEdgeType which infers the role name of an edge. Both functions take in an axiom and

use a HermiT reasoner to perform inferencing.

inferVertexType If the axiom is a subsumption axiom, then we call the getSuperClasses

function of the reasoner, which returns the direct superconcept of the RHS expression of the

axiom. If the axiom is an equivalence axiom, then we call the getEquivalentClasses

function of the reasoner, which returns the equivalent concept names of the RHS expression

of the axiom.

inferEdgeType This function mirrors inferVertexType, but, because of the separation

of TBox axioms concerning roles and concepts in OWL 2, we add an extra step by mirroring

the TBox axioms of roles to TBox axioms of the concepts that represent the roles. Then,

we can use the same functions getSuperClasses and getEquivalentClasses to obtain the

role name of the edges.1

1Note that this method does not deal with complex role inclusion axioms. However, we are currently
investigating the use of the PropertyChainAxiom, which may help in our implementation.

54

4.3 Vertex Contraction

In this section, we describe our implementation of the vertex contraction operation.

We implement a class CPTLOperations that contains an object reference to an instance

of CPTLModel, oldModel. All operations defined in the CPTLOperations are performed on

oldModel. The result of the operations will be a new instance of CPTLModel that we name

newModel.

4.3.1 Basic vertex contraction

We define a function BasicContract that takes a list of sets of vertices,

LinkedList<TreeSet<Vertex>>; the number of sets of vertices to be contracted, m; a func-

tor T; and a functor F. The algorithm for the function is given in Algorithm 2.

In brief, the work flow of BasicContract is as follows. First, we create a new instance of

CPTLModel, called newModel, that copies the existing instance oldModel. Then, we define

the supernodes and their attributes. Finally, we add the edges incident to the supernodes.

In more detail, we iterate through the sets V 1
C , . . . , V

m
C . For each set of vertices, V k

C , we

create an empty instance of the Vertex class, v′k, that represents the supernode.

We extract the concept names of the vertices in the set and add them to a list vType.

The list vType is passed as a parameter to the functor T. The functor T returns an axiom

that describes the concept name of the supernode. The axiom is passed to the function

inferVertexType, which uses a HermiT reasoner to infer the concept names that fulfill the

axiom. One of the concept names is returned by inferVertexType and is added to the

relation TV through updating of the type data field.

The set of vertices V k
C is passed to the functor F. The functor F derives a set of feature

names and corresponding values from the vertex attributes of vertices in V k
C . The result of

the functor F is assigned to the data field attributes.

Finally, addVertex is used to add the supernode vertex v′k to the new data model,

newModel, and removeVertex is used to remove the vertices in V k
C from newModel.

Next, we iterate through all pairs of {V j
C , V

k
C} and {V j

C , vi}, where vi represents vertices

55

Algorithm 2 The function BasicContract.

function BasicContract({V 1
C , . . . , V

m
C },T,F,verify)

newModel← clone(oldModel)

Defines the concept name and vertex attributes of the supernodes
for all groups of vertices V k

C do
vType← extract types of all vertices in V k

C

TAxiom← T(vType)
supernodeType← inferVertexType(TAxiom)

vAttributes← F(vertices in V k
C)

removeVertex(V k
C)

supernode← new Vertex(supernodeType,vAttributes)
addVertex(supernode)

end for

Defines the edges incident to supernodes
for all sets of vertices (V k

C ,W) do
edgeFrom← edges from V k

C to the vertex group or singleton represented by W
edgeTo← edges from the vertex group or singleton represented by W to V k

C

for all edges in edgeFrom do
eType← generalRelation
eAttr← empty set
newEdge← new Edge(eType,eAttr,(supernode,W))
addEdge(newEdge)

end for
for all edges in edgeTo do

eType← generalRelation
eAttr← empty set
newEdge← new Edge(eType,eAttr,(W,supernode))
addEdge(newEdge)

end for

removeEdge(edgeFrom,edgeTo)
end for

Verify validity of contraction operation
run HermiT reasoner over newModel
if model is satisfied then newModel is valid
elseThrow CPTLModelInvalidException
end if

end function

56

that are not being contracted. For each pair, we find the edges between them, and if the

pair of sets of vertices share some vertices, the shareC edge (as mentioned previously) is

added to the list. Then, for each edge ei(v1, v2) where v1 ∈ V j
C , v2 ∈ V k

C , we create a new

edge e′(v′j, v
′
k) and associate the top-level role name that subsumes all other role names with

the new edge e′. Similarly, for each edge ei(v1, v2) where v1 ∈ V j
C , v2 /∈ V 1

C , . . . , V
m
C , we create

a new edge e′(v′j, v2), and for ei(v2, v1), we create a new edge e′(v2, v
′
j). addEdge is used to

add the new edge to the new data model, newModel. removeEdge is used to remove the old

edges from newModel.

Finally, we verify the validity of the CPTL model by writing the new data structure

newModel to an RDF/XML file and running the HermiT reasoner on the file. If the HermiT

reasoner detects an inconsistency in the ontology, the contraction operation is invalid, and

a CPTLModelInvalidException is thrown.

Complexity analysis. We define n to be the total number of vertices over all the m

groups of vertices selected for contraction. We define p to be the total number of edges that

are incident to at least one of the n vertices.

First, we analyze the computational complexity of the first for loop that creates supern-

odes. The functions T,F require a single iteration over the vertices in V k
C . The functions

removeVertex and addVertex run in constant time. The function inferVertexType takes

an amount of time that is at most exponential in the size of the axioms in the ontology [34].

So the total computational complexity for the first for loop is O(n + m(2A)), where A is

the size of the TBox axioms in the ontology. Typically, the size of the TBox axioms can be

considered a constant, since it represents the domain of knowledge.

Next, we analyze the computational complexity of the second for loop, which adds the

edges between the new supernodes and their neighbors. The total number of distinct vertices

in the newModel will be |V |−n+m, where |V | is the total number of vertices in the oldModel.

Then, each edge incident to one of the n selected vertices is visited |V | − n+m times, and

added to the lists edgeFrom and edgeTo in O(log p) time. The functions removeEdge and

addEdge run in constant time. So the total computational complexity for the second for

loop is O(plog p(|V | − n+m)).

57

Therefore, the total computational complexity of BasicContract is

O(n+m(2A) + plog p(|V | − n+m)), which we can upper-bound by O(|E||V |log |E|) where

|E| is the total number of edges in the oldModel.

4.3.2 Extended vertex contraction with edge attributes

We define a function ExtendedContract that takes a list of sets of vertices,

LinkedList<TreeSet<Vertex>>; the number of sets of vertices to be contracted, m; a func-

tor T; a functor F; a functor S; and a functor H. The algorithm for this function is given in

Algorithm 3.

The work flow of ExtendedContract is similar to that of BasicContract with the excep-

tion of the definition of the edges incident to the supernodes, which we describe next.

Just as for BasicContract, we iterate through all pairs of {V j
C , V

k
C} and {V j

C , vi}, where

vi represents vertices that are not being contracted. For each pair, we determine the edges

between them and divide the edges into two categories based on the direction of the edge.

For each category, we pass the edges to the functor S. The functor S constructs the relevant

TBox axioms based on the role names of the edges and returns a mapping of TBox axioms to

edges that correspond to the axiom. For each TBox axiom, T , returned by S, we create a new

edge eT . We pass the axiom to the function inferEdgeType which uses the HermiT reasoner

to infer the role name of the resulting edge eT . The role name returned by inferEdgeType

is added to the relation TE through updating of the type data field. We also pass the edges

ET corresponding to the TBox axiom T to the functor H. The functor H derives a set

of feature names and corresponding values from the vertex attributes of edges in ET . The

result of the functor H is assigned to the data field attributes. Then, addEdge is used to

add the edge eT to the new data model. Finally, removeEdge is used to remove the old edges

from newModel.

Finally, the new CPTL model is verified through the same steps as for BasicContract.

Complexity analysis. The computational complexity of the first for loop is the same as

that of BasicContract.

58

Algorithm 3 The function Contract.

function Contract({V 1
C , . . . , V

m
C },T,F,S,H, verify)

newModel← clone(oldModel)
Defines the concept name and vertex attributes of the supernodes
for all groups of vertices V k

C do
vType← extract types of all vertices in V k

C

TAxiom← T(vType)
supernodeType← inferVertexType(TAxiom)
vAttributes← F(vertices in V k

C)
removeVertex(V k

C)
supernode← new Vertex(supernodeType,vAttributes)
addVertex(supernode)

end for

Defines the role names and edge attributes of edges incident to supernodes
for all sets of vertices (V k

C ,W) do
edgeFrom← edges from V k

C to the vertex group or singleton represented by W
edgeTo← edges from the vertex group or singleton represented by W to V k

C

eType← extract types of all edges in edgeFrom
SAxiomSet← S(eType)
for all edges E that fulfill SAxiomSet(i) do

newEdgeType← inferEdgeType(E)
eAttr← H(E)
newEdge← new Edge(eType,eAttributes,(supernode,W))
addEdge(newEdge)

end for

eType← extract types of all edges in edgeTo
SAxiomSet← S(eType)
for all edges E that fulfill SAxiomSet(i) do

newEdgeType← inferEdgeType(E)
eAttr← H(E)
newEdge← new Edge(eType,eAttributes,(supernode,W))
addEdge(newEdge)

end for

removeEdge(edgeFrom,edgeTo)
end for
Verify validity of contraction operation
run HermiT reasoner over newModel
if model is satisfied then newModel is valid
elseThrow CPTLModelInvalidException
end if

end function

59

Next, we analyze the computational complexity of the second for loop which adds the

edges between the new supernodes and their neighbors. Then, each edge incident to one of

the n selected vertices is visited |V | − n + m times, and added to the lists edgeFrom and

edgeTo in O(log p) time. The functions removeEdge and addEdge run in constant time.

The function inferEdgeType takes an amount of time that is at most exponential in the

size of the axioms in the ontology. The maximum number of times that inferEdgeType is

called in a single iteration of the loop can be upper-bounded by the number of role names

in the ontology |NR|. So the total computational complexity for the second for loop is

O(plog p(|V | − n+m) +m|NR|(|V | − n+m)(2A)).

Therefore, the total computational complexity of Contract is O(n+m(2A)+plog p(|V |−

n+m) +m|NR|(|V | − n+m)(2A)), which we can upper-bound by O(|E||V |log |E|+ |V |2).

60

CHAPTER 5

APPLICATION OF OUR APPROACH

In this chapter, we apply the theory developed in Chapter 3 to an enterprise system. Our

aim is to detect masqueraders and traitors in the system. In Chapter 1, we explained our

choice of malicious insiders as our threat model. Now, we present our approach to detecting

malicious insiders in the context of an enterprise system.

Recall from Chapter 1 that a masquerader is an outsider person who uses a legitimate

user’s credential (e.g., a user account) to perform malicious behavior. As mentioned in

Chapter 2, a masquerader’s actions is likely to deviate from the legitimate user’s behavior.

Thus, we can detect such deviations by baselining legitimate users’ behavior in terms of

activity type, location, amount of activity and timing. In particular, we develop baselines of

each employee’s writes to files and printer preferences. For example, an anomalous amount

of writes to files signals possible tampering with data.

Traitors are much harder to detect because they are inherently legitimate users and can

slowly trick the baselining into accepting potentially malicious behavior. We attempt to

detect traitors by checking for misuse of system resources and data exfiltration. In particular,

we use printing history to determine whether a person is printing large files or stealthily

printing files over a long period of time using company printers. Studies have shown that

a good number of insiders exfiltrate data physically through stealing or printing and it has

been suggested that organizations monitor the printing behavior of employees [11, 12]. So

we develop baselines of employee’s printer preferences and detect unauthorized exfiltration

of data when an employee prints to a distant printer.

In the subsequent sections, we provide a general overview of the application of CPTL,

describe our dataset, and show how CPTL can be used for baselining and specification of

61

an organization’s policies in the context of the dataset.

5.1 General Overview of Workflow

Before we go into the details of the use case, we describe the general workflow of representing

a target system using CPTL and conducting analysis using the CPTL-aware feedback loop.

The general workflow is given in Figure 5.1.

Figure 5.1: The general workflow of applying CPTL to a target system. The bold arrows
represent the offline data processing and analysis, whereas the dotted arrows represent
dynamic data flows and processing. The star-shaped icon labeled “6” represents a reasoner
that is run over the ontology.

First, we obtain raw data from heterogenous sources of information such as logs, IDS

alerts, and network packets. In step 1 of Figure 5.1, each set of data is parsed into either

an intermediate GraphML or XML format that represents the graph G in the CPTL data

62

model. In step 2, we read the GraphML or XML file and populate the graph G in a CPTL

data model with the information.

The full CPTL data model contains all the data and their relations. However, we want

to conduct analyses that rely on some subset of the data. Therefore, we generate views of

the full CPTL data model by extracting sub-graphs that contain relations and individuals

of interest using the appropriate functions FilterEdge or RetainEdge that were described

in Section 4.1.5.

The subset of TBox axioms that are necessary for analysis are listed in a separate

RDF/XML file smallbase, represented in the figure by a beveled box. Then, the ABox

axioms for the sub-graph are generated using the function generateABoxAxiom (illustrated

in Algorithm 1) and added to smallbase in step 3.

Finally, we conduct offline analysis on the data in the view. The offline analysis results in

the generation of axioms that are added to smallbase in step 4. When events occur in the

system, they are added to the full CPTL data model and the corresponding views as shown

in step 5. In step 6, a HermiT reasoner (represented by the star-shaped icon), is run over

the views to check for violations; that, in turn, updates the offline analysis.

5.2 Data Sources

Following our workflow, in step 1, we obtain data sources about our target system which is

an enterprise system. Our dataset consists of two components: commits to a git repository,

and print jobs of a group of employees in a research group over a period of one year. We

now describe the two components in detail.

Git repository. The git repository is a shared research resource that contains papers,

reports, source code, Web documents, spreadsheets, and presentations. Directories are gen-

erally organized according to projects. Several directories may belong to the same project.

The git repository is accessed by 5 employees, and each employee can have multiple creden-

tials.

We extract data from the git logs using the commands git log --name-status and

63

git log ---stat. The information provided by the commands is organized according to

commits made by an associated credential. The commit information consists of the commit

number, commit message, list of files modified, number of insertions and deletions made to

the file in terms of lines, and timestamp of the commit.

We implemented a program GitLogToXml that parsed the information from the logs and

constructed a graph using the Boost Graph Library (BGL) [35]. The Boost graph was then

written into a GraphML file that represents the graph G in the CPTL data model. We

implemented a function called readGraphML that takes in a GraphML file and populates a

CPTLModel instance.

Print jobs. Employees print documents to printers that reside in buildings. In every

building, there may be more than one printer on each floor. Employees must authenticate to

a printer using their credentials before their print jobs are allowed to execute. An employee

may submit his or her print jobs from more than one machine.

We collected the print job data of 6 employees using a Web interface that pulls data from

the print events associated with credentials. In the process of collecting data, we realized

that some employees who used Macintosh machines did not have their print jobs logged by

the database, because their login IDs on the machine did not correspond to their credentials.

Since we collected data only from the Web interface, we were unable to develop baselines for

that group of employees. That loophole in the logging system illustrates the importance of

collecting and relating data from heterogenous sources together. If we had access to the print

logs of the individual printers, we could have identified the loophole earlier and corroborated

information about printer state in our later examples.

The Web interface provides a list of print jobs for each employee. The print job information

consists of the credentials of the employee, name of the file, number of pages printed, the

machine used by the employee, and printer location.

We used JTidy [36] to convert the HTML file of the print jobs to an XML file. Then,

we implemented a function readPrintJob that parses the information in the XML file, and

populates a CPTLModel instance. The machine data does not provide enough information

about the machine’s location. Because of the low information value, we do not use those

64

data.

5.3 Ontology

In this section, we give a brief overview of the ontology (represented by the beveled box in

Figure 5.1) that we developed to represent the domain knowledge of our target system. We

describe the concept names, role names, feature names, and individual names used in the

ontology, and the design decisions that we made.

Concept names. The main concept hierarchy that describes the domain knowledge of the

target system is shown in Figure 5.2. An explanation of the terms in Figure 5.2 is given in

Table 5.1a. A few other concepts that will be used in subsequent examples are explained in

Table 5.1b.

Figure 5.2: The concept hierarchy used in the ontology base. An arrow from concept A to
concept B indicates that B v A.

When we model a graph that has multi-edges or edges with attributes, we create a top-level

concept name Edges that represent the role names. We add concept names that represent

role names and assert that they are subsumed by Edges. We also add TBox axioms for the

concepts that mirror the TBox axioms for the roles as explained in Section 4.2. In addition,

we assert that each concept name, say E, has exactly one relation of type eFrom and one

relation of type eTo, as described in Section 4.1.3.

Based on our understanding of the knowledge domain, we assert that all those classes are

disjoint with each other, so that any individual can be a member of only one class.

65

(a) Description of concept names in the ontology.

(b) Description of additional concept names in the ontology.

Table 5.1: The different shades of blue indicate levels in the concept hierarchy; the darker
the shade, the higher a concept name is in the hierarchy. The lighter entries below a
concept name are members of that concept name.

66

Role names. The main role hierarchy is shown in Figure 5.3 which illustrates the relations

between entities in the target system. An explanation of the terms is given in Table 5.2a. A

few other roles that will be used in subsequent examples are explained in Table 5.2b.

Figure 5.3: The role hierarchy used in the ontology base. An arrow from role A to role B
indicates that B v A.

A print event is a four-tuple consisting of the credential, file, machine, and printer. How-

ever, a CPTL data model only covers binary edges, whereas a print event is a hyperedge of

size four. We intend to extend our definition of the CPTL data model to model hyperedges

in Chapter 7 when we discuss future work. For now, we instead model the print event as

three binary edges. Each edge is an instance of the prints role name. For a print event

(Identityi, Filei, Machinei, Printeri) we create three edges: prints(Identityi, Filei),

prints(Identityi, Printeri), and prints(Filei, Printeri).

Feature names. Finally, we describe the feature names in the ontology. An explanation

of the terms is given in Table 5.3a. A few other features that will be used in subsequent

examples are explained in Table 5.3b.

We divide the timestamp of events into separate components: year, month, day, hour,

minute, and second. That division allows us to conduct analysis at different time granulari-

ties.

Individual names. We assert that all individual names in the ontology are distinct to

avoid problems with Open World Reasoning. In Open World Reasoning, an individual that

is not asserted as distinct can be inferred by the TBox axioms to be the same individual as

another individual. However, two individuals would never be treated as one. So, we “close”

the world by constructing an axiom that asserts that all individuals are distinct.

67

(a) Description of role names in the ontology.

(b) Description of additional role names in the ontology.

Table 5.2: The different shades of blue indicate levels in the role hierarchy; the darker the
shade, the higher a role name is in the hierarchy. The lighter entries below a role name are
members of that role name.

68

(a) Description of feature names in the ontology.

(b) Description of additional feature names in the ontology.

Table 5.3: The feature names that are used in the ontology.

69

5.4 Profiling User’s Behaviors

In this section, we introduce two detectors that baseline user’s behaviors. To detect tam-

pering with data, we implement a detector that profiles a person’s writes to a file in Sec-

tion 5.4.1. To detect data exfiltration, we propose profiling a person’s printing behavior. So

we implement a detector that profiles a person’s printing behavior in Section 5.4.2.

5.4.1 Writes to files

We want a way to profile a person’s writes to a file. Our aim is to detect an anomalous

amount of modifications made by a person to a file as it could indicate tampering with data.

The procedure we developed is as follows.

Initialization phase. First, we develop an initial baseline of each person’s writes to every

file in the file system for a month. We keep a CPTLModel data structure called WriteHistory

that is a view of the full CPTL data model which contains writes to files. The WriteHistory

is initialized with the first month’s writes. We want to express a baseline that limits a

person’s writes to within three standard deviations of the mean number of modifications

made to a file. Thus, we perform two contractions: one to obtain the average number of

modifications and one to obtain the standard deviation.

We want to collapse the distinction between people and their credentials. So, we contract

each Person (represented as P) and their associated credentials (represented as I) into a

single supernode. So, the set of selected vertices is defined as VC = {(Pk, I1, . . . , Is)|Pk ∈

PersonI ,∃er(Pk, Iq) ∈ E(G), er ∈ hasIdentityI for q ∈ [1, s]}. We specify the concept

name of the supernode using the TBox axiom T that is defined as X ≡ TV (Pk). We define

the attributes of the supernode using the function F that is defined as follows.

F(name) = g (5.1)

g({(Nj
C,

⋃
1≤i≤n

∆Di)|vj ∈ VC }) = name(vj), vj ∈ PersonI (5.2)

We specify the role names of the edges incident to the supernode using the TBox axiom S.

70

S is defined as the set of a single axiom X ≡ write that describes the grouping of edges

that are instances of the write role name. Finally, we define the edge attributes for the first

contraction as the average number of modifications, using the function H1 that is defined as

a set of one tuple (S1,J1), where J1 is defined as follows.

J1(numInsert)→ g1

g1({(Nj
C,

⋃
1≤i≤n

∆Di)|vj ∈ VR }) = average{numInsert(v1), . . . , numInsert(vk)}

J1(numDelete)→ g2

g1({(Nj
C,

⋃
1≤i≤n

∆Di)|vj ∈ VR }) = average{numDelete(v1), . . . , numDelete(vk)}

The edge attributes of the write edges are the average number of insertions and deletions

made by a person Pk to a file Fi. The result of the first contraction is a CPTL data model

called avgModel.

We define H2 for the second contraction to obtain the standard deviation as a set of one

tuple (S1,J2) where J2 is defined as follows.

J1(numInsert)→ g1

g1({(Nj
C,

⋃
1≤i≤n

∆Di)|vj ∈ VR }) = stddev{numInsert(v1), . . . , numInsert(vk)}

J1(numDelete)→ g2

g1({(Nj
C,

⋃
1≤i≤n

∆Di)|vj ∈ VR }) = stddev{numDelete(v1), . . . , numDelete(vk)}

The edge attributes of the write edges for that contraction are the standard deviation of

the number of insertions and deletions made by a person Pk to a file Fi. The result of the

second contraction is a CPTL data model called stddevModel.

We can create a variety of rules using this information. In this example, we will assert

that Pk can make between imax = numInsertavgModel + 3 × numInsertstddevModel and imin =

numInsertavgModel− 3× numInsertstddevModel insertions and dmax = numDeleteavgModel + 3×

numDeletestddevModel and dmin = numDeleteavgModel − 3 × numDeletestddevModel deletions. In

71

Chapter 6, we will experiment with a few different rules to determine which one is the best

at detecting violations.

So, we create a class PkWriteFi that describes the baseline of modifications that person

Pk makes to file Fi. The class is described by the following two axioms.

PkWriteFi ≡ PkWriteFi u (= 1)numInsert.(≥imin
,≤imax) u (= 1)numDelete.(≥dmin

,≤dmax)

(5.3)

PkWriteFi ≡ Write u (= 1)writeTo. =Fi
u(= 1)writeFrom. =Pk

(5.4)

Axiom(5.4) defines the class as containing the writes made from Pk to Fi. More formally, the

class contains individuals that are instances of the concept Write (which represents edges

of type write) which has exactly one relation writeTo with a range of only Fi and exactly

one relation writeFrom with a range of only Pk. Axiom(5.3) asserts that individuals of this

class must have a number of modifications within the specified range.

Online checking. For each subsequent week, we add the axioms PkWriteFi to the ontol-

ogy. When events representing writes to files occur in the system, those events are asserted

as facts in the ontology using ABox axioms. We run a HermiT reasoner for each event, and

if the ontology is satisfiable, then the write event is permitted. The write event is added

to WriteHistory. If the ontology is not satisfiable, the write event is shown to a human

administrator who judges whether or not the write event is indeed malicious behavior. We

simulate that judgment using a random number generator that outputs a real number be-

tween 0 and 1. The probability of the write events being malicious is assigned to be 0.2. If

the write event is non-malicious, it is permitted and added to WriteHistory. If the write

event is deemed malicious, it is denied.

Offline analysis. Now, the updated WriteHistory contains writes that have been per-

mitted within the last week. We run the same contraction operations on WriteHistory and

update the class axioms representing the baseline profiles.

72

5.4.2 Printing files

We want a way to profile a person’s preference for printers. Our aim is to detect data

exfiltration by noticing print events that involve use of a printer other than the user’s default

printer choice, when the unusual use cannot be explained by printer state. The procedure

we developed is as follows.

Initialization phase. First, we develop an initial baseline of each person’s choice of

printer. We follow the same initialization process in Section 5.4.1 with the exception that we

look at a different role name. We group each person’s credentials together and perform con-

traction on the set of groups of people. So VC = {(Pk, I1, . . . , Is)|Pk ∈ PersonI ,∃er(Pk, Iq) ∈

E(G), er ∈ hasIdentityI for q ∈ [1, s]}, and T is specified as X ≡ TV (Pk). The function F

is defined in Equations 5.1 and 5.2.

We group edges that are instances of role name prints; i.e., S is the set of a single axiom

X ≡ prints. Finally, we specify the edge attributes of the prints role name as follows.

The edge attribute is the number of prints edges. We define H as a set of a single tuple

(S1,J), where J is defined as follows.

J(numPrints)→ g

g({(Nj
C,

⋃
1≤i≤n

∆Di)|vj ∈ VR }) = count{v1, . . . , vk}

where |VR| = k.

Then, we can deduce each person’s default choice of printer by comparing the frequencies

of the person’s print jobs sent to various printers.

Finally, we create a class SkPrint that describes the printers that person Sk is likely to

use for printing. The class is described by the following two axioms.

SkPrint ≡ Prints u ∃printTo.Printer u ∃printFrom.Person u (= 1)printFrom. =Sk

SkPrint ≡ SkPrint u ((= 1)printTo. =Pl
)

where P1 is Sk’s default printer.

73

We also initialize a CPTLModel instance PrintJobDay that is a view of the full CPTL

data model that contains print jobs that occurred in a single day. The PrintJobDay will

be updated with print jobs as they occur in the system, and once the day is over, the

PrintJobDay will be re-initialized without any print jobs. The state of the printer, i.e.,

printerState, is set to “working” when the day begins.

Online checking. As print jobs arrive in the system, we assert them as facts in the

ontology using ABox axioms. We then run a reasoner to detect inconsistencies within the

ontology, and if the ontology is satisfiable, the print job is permitted. The print job is

added to PrintJobDay. If the ontology is not satisfiable, the print job can be automatically

blocked.

Offline analysis. Now, the updated PrintJobDay is used to infer the status of the printers

and update the SkPrint axioms.

First, we contract each printer (represented by P) along with the people who printed

to it (represented by S) and files that were printed to it (represented by F). So, VC =

{(Pi, S1, . . . , Sk, F1, . . . , Fm)|Pi ∈ PrinterI ,∃er(Sj, Pi) ∈ E(G), er ∈ printsI for j ∈ [1, k],

∃er(Fj, Pi) ∈ E(G), er ∈ printsI for j ∈ [1, k]}.

The smallBase ontology contains a specification of the concept name PrinterGroup. The

concept PrinterGroup is defined by the following axiom

PrinterGroup ≡ (= 1)numFiles. ≥0 u(= 1)numPerson. ≥0. We specify T as X v (=

1)numFiles. =count{F1,...,Fm} u

(= 1)numPerson. =count{S1,...,Sk}, which would result in the reasoner’s inferring that the

supernode is of type PrinterGroup. The function F is defined as follows.

F(name) = g

g({(Nj
C,

⋃
1≤i≤n

∆Di)|vj ∈ VC }) = name(vj), vj ∈ PrinterI

Our hypothesis is that if a person prints a file F1 to printer P1 and then subsequently prints

F1 to another printer, P2, it means that P1 was not available. This is based on the assumption

74

that any person, malicious or not, would rarely print the same file to two different printers

unless one of the printers was unavailable.

We detect the occurrence of the event that a person prints a file to different printers when

two contracted supernodes share a Person vertex and a File vertex. We define S as the

following set of axioms.

X ≡ shareFile u shareIdentity (5.5)

X ≡ prints (5.6)

The axiom S1 in (5.5) means that the role name of the resulting edge is changePrinter when

both shareFile and shareIdentity edges exist, and that if only one of either shareFile or

shareIdentity exists, then the role name of the resulting edge takes on the existing edge’s

role name. The axiom S2 in (5.6) describes the grouping of edges that are instances of the

prints role name.

However, the indication of a changePrinter edge only informs us that one of the printers

incident to the edge is unavailable; it does not indicate which one. So, we need edge attributes

of the prints edge to inform us about the time of the print job. Therefore, we define H as

75

a set of two tuples (S1,J1) and (S2,J2), where J1 and J2 are defined as follows.

J1 = φ

J2(hour)→ g1

g1({(Nj
C,

⋃
1≤i≤n

∆Di)|vj ∈ VR }) = minhour{(hour(v1), min(v1), second(v1)),

. . . , hour(vk), min(vk), second(vk))}

J2(minute)→ g1

g1({(Nj
C,

⋃
1≤i≤n

∆Di)|vj ∈ VR }) = minminute{(hour(v1), min(v1), second(v1)),

. . . , hour(vk), min(vk), second(vk))}

J2(second)→ g1

g1({(Nj
C,

⋃
1≤i≤n

∆Di)|vj ∈ VR }) = minsecond{(hour(v1), min(v1), second(v1)),

. . . , hour(vk), min(vk), second(vk))}

where |VR| = k.

The edge attributes of the prints edges are the times of the first print jobs that were sent

to P1 and P2. With that information, we can identify the printer that is down as the head

vertex of the edge with the lowest time.

Now, we can update the SkPrint axioms with the list of printers that person Sk is allowed

to use. For each person, if his or her default printer is now unavailable, we list printers

that are currently available and closest in distance to the default printer’s location. In

this example, we define distance in terms of the number of floors and building location. In

particular, printers that are located on the same floor are the closest, followed by printers

on different floors of the same building; printers in different buildings are the farthest. We

can exchange that definition for a more complex version by modifying the search criteria for

printers.

76

Then, we update the axioms by modifying them as follows.

SkPrint ≡ SkPrint u ((= 1)printTo. =P1 t · · · t = 1printTo. =Pk
) (5.7)

where P1, . . . , Pk are the printers that are available and closest to the default printer.

However, there may be false positives when a user is printing a confidential document at

a secure office printer rather than a common shared computer. We can use additional data

sources about the type of printer and document to inform our decision-making process. On

top of that, we can incorporate state information from the printers themselves to support or

refute our current working hypothesis. Finally, to enhance our policy, we would also want

data about the location of the machine that was used to send the print job.

5.5 Misuse of System Resources

5.5.1 Printing of copyrighted material

We want to detect printing of copyrighted material (specifically textbooks), that has been

obtained through illegal means. Textbooks represent a good example because they have

large numbers of pages. If the whole content of the textbook was printed at once, it would

take a long time to print, thus causing congestion of the printer queue. This congestion

could cause other people to look into the issue and detect the misuse of system resources.

So people could evade detection by printing books chapter by chapter over a period of time.

We use contraction to contract all files with the same name together and discover the total

number of pages printed.

Of course, that may result in false positives, e.g., if a professor prints out many copies of

an exam or a student prints out chapters of a thesis. Such occurrences can be explained by

other data sources; for example, the exam date or the thesis deadline (and the knowledge

that a student is working towards a thesis) can be correlated with the printing time. Data

from diverse sources can be fused to gain a more comprehensive picture.

77

Initialization phase. First, we initialize a CPTLModel data structure called PrintHistory

which is a view of the full CPTL data model that contains the print events of files. The

PrintHistory will initially contain only the vertices that are instances of the Person or

Identity concept name. We group each person’s credentials together and perform basic

contraction on the set of groups of people, much like the contraction operation used in

profiling writes to a file (see Section 5.4.1). Therefore,

VC = {(Pk, I1, . . . , Is)|Pk ∈ PersonI ,∃er(Pk, Iq) ∈ E(G), er ∈ hasIdentityI for q ∈ [1, s]}

T→ X ≡ TV (Pk) (5.8)

F(name) = g (5.9)

g({(Nj
C,

⋃
1≤i≤n

∆Di)|vj ∈ VC }) = name(vj), vj ∈ PersonI (5.10)

Online checking. For each print job, we add the event to PrintHistory.

Offline analysis. Now, we want to enforce the policy that a person can only print less

than a threshold number of pages of a particular file. We represent the threshold as

THRESHOLD PAGES.

Then, we contract each person individually (represented by P). Then, VC = {Pk|Pk ∈

Person}, and T and F are defined using Equation 5.8, 5.9, 5.10.

We define S as the set of a single axiom X ≡ prints that describes the grouping of

edges that are instances of the prints role name. Finally, we define H as a set of one tuple

(S1,H1), where J1 is defined as follows.

J1(numPages)→ g1

g1({(Nj
C,

⋃
1≤i≤n

∆Di)|vj ∈ VR }) = sum{numPages(v1), . . . , numPages(vk)}

where |VR| = k. The edge attribute of the prints edges is the number of pages printed by a

person of a specific file. If a prints edge has a feature value for numPages greater than the

78

THRESHOLD PAGES, then the human administrator is presented with the information about

the person, the file, and the number of pages of the file that was printed.

If the human administrator decides that the person violated the organization’s policy,

then the user can be denied print access, blocked from printing the same file again, or have

a reduced threshold for the number of pages that may be printed.

79

CHAPTER 6

EVALUATION

In this chapter, we evaluate the performance of a CPTL data model, operations on that

model, and the application of the CPTL-aware feedback loop in the context of intrusion

detection within a small enterprise system example.

6.1 Implementation Performance

Chapter 4 described the implementation of the CPTL data structure and vertex contraction

operations in Java. Now, we discuss experiments that we performed to determine the time

and space complexity of using CPTL in the context of a small enterprise setting that was

described in Chapter 5. All experiments were conducted on a Windows 7 Home Premium

machine with 2.7 GHz CPU core and 4 GB of RAM.

6.1.1 CPTL Model

Space complexity. After parsing the data from the git logs and the print jobs, we ob-

tained a graph of 2,684 vertices and 9,048 edges. The CPTLModel instance occupied 5.74 MB

in memory. We wrote the ABox axioms representing the graph to an ontology RDF/XML-

formatted file and measured the file size to be 9.81 MB. The number of RDF triples repre-

senting the graph was 94,668.

Time complexity. It took on average 9.538 seconds to load the entire graph of 2,684

vertices and 9,048 edges. We generated different views of the graph for each of our intrusion

detectors (listed in Chapter 5). All the views retain the vertices of the original graph but

only a subset of the edges. PrintView is used for generating axioms that detect suspicious

80

print jobs by looking at the printer location, as explained in Section 5.4.2. That view consists

of all prints and hasIdentity edges. PrintFileView is used for generating axioms that

detect printing of a large number of pages, as explained in Section 5.5.1. That view consists of

prints edges between vertices which are instances of Identity and File, and hasIdentity

edges. Finally, the WriteFileView is used for generating axioms that detect a suspicious

amount of writes to files as explained in Section 5.4.1. That view consists of write edges

and hasIdentity edges.

Table 6.1 shows the number of edges in each view, the time complexity of generating the

view, and the space complexity of each view. We deduce that the space complexity is linear

in the number of edges, whereas the time complexity of generating the views is relatively

constant at ∼ 0.3 seconds.

Table 6.1: Statistics for generating views of a CPTL data model.

PrintView PrintFileView WriteFileView

Number of edges 3,619 1,217 317
Memory size (MB) 3.33 2.13 1.7

Average time to generate (s) 0.365 0.332 0.321

6.1.2 Vertex Contraction

In our use case examples, the selected number of vertices for the vertex contraction operation

ranged between 8 and 35. Thus, the time complexity of the vertex contraction operation

was more dependent on the number of edges, which ranged between 0 and 960.

We evaluate the time complexity of the vertex contraction operation with respect to the

number of edges in the CPTL data model. Figure 6.1 shows the time taken for the vertex

contraction operation, and Figure 6.2 shows the time taken for the verification step. As

mentioned in Section 4.3.2, the time complexity of the contraction operation is on the order

of plog p with respect to the number of edges, p. We plot the trend-line of plog p in Figure 6.1

and we can observe that the time complexity does follow the trend-line. The time complexity

of verification is on the order of a second-order polynomial, and closely follows the trend-line

as well.

81

Figure 6.1: Plot of time taken for vertex contraction operation vs. number of edges
incident to selected vertices for contraction.

Figure 6.2: Plot of time taken for verifying validity of CPTL data model vs. number of
edges in the CPTL data model.

82

We also evaluate the time complexity of concept and role inferencing. Since the number

of axioms in the ontology is constant for all the vertex contraction operations, the time

complexity is dependent on the axiom used for concept and role inferencing. Axioms that

involved only one primitive concept or role name, like X ≡ C,C ∈ NC or X ≡ R,R ∈ NR,

took an average of 0.02 milliseconds. Axioms that involved additional operators, like X ≡

C1 u C2, C1, C2 ∈ NC or X ≡ R1 u R2, R1, R2 ∈ NR, took an average of 3.68 milliseconds

for concept names and 0.2 milliseconds for role names. Those results show that inferencing

is fast for the axioms that we have defined.

Finally, we evaluated the time and space complexity of CPTL and the vertex contraction

operation; it was satisfactory. We also measured the false positive and false negative rates

of our detectors. The false negative rate was as low as 0.1, although the highest false

negative rate was 0.45. The false positive rate was lower than 0.3 and can be reduced by

the integration of other data sources that help to explain the occurrence of events. We will

provide more details on this in the remainder of our chapter.

6.2 Use Case Performance

In this section, we evaluate the performance of our CPTL-aware feedback loop in the context

of the detectors that we implemented in Chapter 5. For each detector, we specify the number

of axioms generated and the time complexity of generating axioms, updating the CPTL

model, and detecting violations.

6.2.1 Profiling User Writes

In Section 5.4.1, we described a detector that aims to flag anomalous writes to files on a

per-person basis. Our results are given below.

Number of axioms. A total of 159 axioms were generated.

83

Offline analysis. We quantify the time taken for the offline analysis component in the

CPTL-aware feedback loop. That component involves updating the CPTL data model and

generating axioms for detection. We looked at two different rates of updating the offline

analysis component: after a span of one week, and after a write was made. Figure 6.3 shows

the time complexity of generating the axioms for baselining people’s writes to files after a

period of one week, and Figure 6.4 shows the time complexity for the individual write update

rate. The average time complexity is 1.8 seconds for the weekly update rate and 1.3 seconds

for the individual write update rate. We can see that the time varies from less than a second

to a maximum of 6 seconds for the weekly update rate. The time complexity is acceptable

since we are conducting the generation at the end of every week. The time complexity for

the individual write update rate is below 3 seconds, which is also acceptable, since typically

there are write commits only every few minutes.

Figure 6.3: Histogram of time complexity of generating axioms that baseline writes to files
with a weekly update rate.

Online checking. We quantify the time taken for the online checking component in the

CPTL life cycle. That component involves running of a HermiT reasoner to check for

consistency and updating of the CPTL data model. Figure 6.5 shows the time complexity

84

Figure 6.4: Histogram of time complexity of generating axioms that baseline writes to files
with an individual write update rate.

of checking the consistency of the axioms. The average time complexity is 65 milliseconds.

We can see that the time varies between 10 milliseconds and 750 milliseconds

The time complexity for updating the CPTL data model is consistently below 200 millisec-

onds. Thus, we can conclude that the most time-consuming aspect of the online checking

phase is the consistency check.

Detection rate. In our dataset, we assume that all writes are non-malicious. So we need

to generate synthetic test data that simulate malicious actions. We describe the procedure

of generating synthetic test data as follows. First, we randomly choose a user-file pair and

inject 10 malicious writes over a period of 10 weeks. Five user-file pairs are chosen, giving

rise to 50 malicious writes in total.

We limit the files to .tex and .pdf files because our repository consists mainly of these

two file types. For each selected user and file (U1-F1) pair, we randomly choose another

file, say F2, that has the same extension as the selected file F1. Then, we randomly select a

write made to F2 and note down the number of modifications made to F2. That number of

modifications is used as the malicious write for the U1-F1 pair.

We also used the number of standard deviations to modify the baselines to be either more

85

Figure 6.5: Histogram for time complexity of detecting anomalous writes to file.

specific or more general. The higher the number of standard deviations, the larger the range

of possible modifications, and thus the baseline is more general.

We ran the procedure five times and obtained the average false positive and false negative

rates. Figure 6.6 shows the false negative rate, and Figure 6.7 shows the false positive rate.

We can deduce that as the baseline is made more specific, the false negative rate decreases,

and therefore more malicious writes are caught. The .tex files’ malicious modifications are

caught more often than the .pdf modifications because of the .pdf files’ higher variance in

modifications. In general, the weekly update rate outperforms the individual write update

rate, which indicates that the modifications are relatively steady over a week but vary greatly

from write to write.

On the other hand, as the baseline is made more specific, the false positive rate generally

increases, with the exception of .pdf files with the individual write update rate. That trend is

typical of IDSes that use baselining to detect malicious activity. However, the false positive

rates across all configurations are within 0.05 of each other, which implies that we should

focus on the false negative rate when choosing the specificity of the baseline. We can see

that the weekly update rate greatly outperforms the individual write update rate in terms of

false positives. Therefore, the best baseline would be a weekly update rate with a standard

86

Figure 6.6: False negative rate of detecting anomalous writes.

Figure 6.7: False positive rate of detecting anomalous writes.

87

deviation of 1.

6.2.2 Profiling User Printing

In Section 5.4.2, we described a detector that aims to detect data exfiltration based on

people’s default printer preferences, printer status, and printer location. Our results are

given below.

Number of axioms. A total of 6 axioms were generated on a daily basis.

Offline analysis. We quantify the time taken for the offline analysis component in the

CPTL lifecycle. Figure 6.8 shows the time complexity of generating axioms that specify

printing behavior. The average time complexity is 296 milliseconds.

Figure 6.8: Histogram of time complexity of generating axioms that specify normal
printing behavior.

Online analysis. We quantify the time taken for the online checking component of the

CPTL lifecycle. Figure 6.9 shows the time complexity of checking the consistency of the ax-

ioms. The average time complexity is 89 milliseconds. The time varies between 60 millisec-

onds and 150 milliseconds, which is faster than the performance described in Section 6.2.1

because fewer axioms need to be checked for consistency.

88

Figure 6.9: Histogram for time complexity of detecting illegal print jobs.

The time complexity for updating the CPTL data model is consistently below 60 millisec-

onds. Much as described in Section 6.2.1, the most time-consuming aspect of the online

phase is the consistency check.

Detection rate. Unlike the baseline detector discussed in Section 6.2.1, the detection for

printing is based on a policy specification that flags print jobs as suspicious if the person

printed to a printer other than the default printer. So any print jobs that do not fulfill the

specification are caught by the axiom. Thus, we only discuss false positives in this section.

There were 20 violations from a total of 3,594 print jobs. Out of the 20 violations, 14

were print jobs that were sent to a printer in a different building from the default printer,

from a machine that was located close to the printer used. That evidence indicates that

we could reduce the number of false positives if we had more information. The other six of

the violations were print jobs that were sent to a neighboring printer close to the default

printer even though the default printer was inferred to be working. However, we only infer

the printer state based on our hypothesis of human behavior. In fact, someone may print a

file to two different printers for an appropriate reason. For example, a secretary could want

to save time by printing multiple copies of a report to two different printers. In the example

of the six violations, the employee happened to find that the default printer was not working

89

and subsequently printed to the neighboring printer. Thus, there was no occurrence of a

file’s being printed to both printers. We can enhance this hypothesis with printer logs that

indicate whether a printer is working.

6.2.3 Misuse of System Resources

In Section 5.5.1, we describe a detector that aims to detect abuse of system resources by

keeping track of the number of pages of a file being printed. Our results are given below.

Offline analysis. We quantify the time taken for the offline analysis component in the

CPTL lifecycle. Figure 6.10 shows the time complexity of updating the CPTL data model

with print jobs. The time taken is exponentially related to the number of edges in the current

CPTL data model. We can reduce the time complexity by discarding older data or ignoring

print jobs when the file being printed is deemed to be of low value to the organization.

Figure 6.10: Plot of time taken for updating CPTL data model vs. number of edges in
CPTL data model.

Online analysis. We quantify the time taken for the online checking component in the

CPTL lifecycle. The time complexities of checking for violations and updating the model

90

are both consistently less than 1 millisecond, because this detector does not require that a

reasoner be run over the data to check for consistency.

Detection rate. Just as described in Section 6.2.2, we only discuss false positives that do

not fulfill the specification.

There were 4 violations from a total of 3,594 print jobs. Two of the violations were print

jobs that involved multiple copies of the file for distribution purposes. To reduce false pos-

itives, we can use machine learning to detect such files. For example, a simple classifier

could look for words such as “Distribution” or “ProblemSet”. One of the violations was an

accidental print job that was eventually canceled by the user. The last violation occurred

because certain documents that were newly downloaded and subsequently printed were be-

ing assigned a default name. Thus, an accumulation of the print jobs of such documents

culminated in a violation. We can use information such as the cancellation of a print job or

knowledge about document naming to reduce false positives.

91

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this thesis, we discussed the limitations of IDSes and explained the need for a language that

describes an online “world view” that maintains information about the state of a system. We

then presented a definition of the Cyber-Physical Topology Language and its operations that

is grounded in graph theory and Description Logics. CPTL provides a formal specification

of a target system and it can be queried by operations to obtain information about the

target system. In particular, we introduced a vertex contraction operation that presents

a summarized view of a target system. We proposed a CPTL-aware feedback loop that

describes an approach to combine the more intensive analysis that uses operations, and the

less intensive processing of events that occur in the target system.

To illustrate the practicality of our theoretical framework, we provided an implementation

of CPTL and vertex contraction, and applied it to an enterprise setting to detect suspicious

user behavior. We developed three detectors that used vertex contraction to extract features

of the target system. Then, we simulated the arrival of events in the target system, the

updating of the CPTL data model and the detectors, and the checking of the events for

violations. The results showed that our approach is efficient and has a low false negative

and false positive rate.

We conclude that our Cyber-Physical Topology Language and operations are a promising

theoretical framework that allows for the maintenance of an “online world view” that can

be used in the context of intrusion detection.

92

7.2 Future Work

We will now discuss the avenues for future work in terms of the theoretical framework,

implementation, application, and evaluation of CPTL and its operations.

First, our current definition of CPTL does not model hyperedges. We worked around

this caveat by modeling the prints hyperedge as three separate binary edges. We intend

to explore different ways of extending the CPTL definition to model such occurrences of

non-binary relations.

Second, we mentioned in Chapter 3 that we do not handle complex S axioms that involve

role inclusions. However, those complex axioms are also useful. For example, if we had a

CPTL data model that described the architecture of monitor placement in a data center

environment, then we could perform contraction on a single physical machine to view the

monitors residing on it. If a monitor on the machine was also monitoring another physical

machine, we would want to represent the relation between the supernode and the other

physical machine as that of sharing a monitor. That relation can be represented in terms of

role inclusion; i.e., shareMonitor ≡ hasMonitor−1 ◦ hasMonitor.

However, no inference problems have been defined for role names with that amount of

complexity. We could resort to brute-force methods. For example, we could manually search

through all TBox axioms for role definitions that satisfy the given TBox axiom. Brute-force

method, however, is a last resort. We will investigate other approaches to solving that

problem.

We also intend to develop the other operations mentioned in Section 3.4, i.e., Join and

Abstract. Eventually, we aim to develop a suite of operations that can be combined together

to obtain interesting and useful features of the target system.

Third, our current implementation of the CPTL data model is a preliminary version that

is meant to test the feasibility and practicality of our theoretical framework. We intend to

optimize our implementation in terms of space complexity and time complexity.

Fourth, our dataset involves a small set of people and two data sources: git logs and print

jobs. We plan to obtain a larger sample of people and augment our CPTL data model with

other sources of information, such as printer logs and machine location. We also intend to

93

look into other methods of evaluating our detectors, such as simulation by red teams.

Finally, we intend to apply our CPTL life cycle to other target systems, such as the power

grid and data centers. In general, we can also apply our CPTL operations to other areas,

such as privacy. For example, in the context of exchange of information across organizations,

we can use vertex contraction to present a higher-level architectural view of a target system

without revealing specific details of the machines.

94

REFERENCES

[1] United States Computer Emergency Readiness Team, “US-CERT year in review,” U.S.
Department of Homeland Security, Year in Review Report, 2012.

[2] Symantec Corporation, “Internet security threat report,” 2013 Trends, April 2014.

[3] L. Bilge and T. Dumitras, “Before we knew it: An empirical study of zero-day attacks
in the real world,” in Proceedings of the 2012 ACM Conference on Computer and
Communications Security, ser. CCS ’12. New York, NY, USA: ACM, 2012. [Online].
Available: http://doi.acm.org/10.1145/2382196.2382284 pp. 833–844.

[4] J. Flynn, “Intrusion Along the Kill Chain,” in Proceedings of BlackHat USA. BlackHat,
August 2012.

[5] N. Stakhanova, S. Basu, and J. Wong, “On the symbiosis of
specification-based and anomaly-based detection,” Computers & Secu-
rity, vol. 29, no. 2, pp. 253 – 268, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167404809000893

[6] S. Axelsson, “Intrusion detection systems: A survey and taxonomy,” Chalmers Univer-
sity of Technology, Tech. Rep., 2000.

[7] H.-J. Liao, R. C.-H. Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection system: A
comprehensive review,” Journal of Network and Computer Applications, vol. 36, no. 1,
pp. 16–24, 2013.

[8] G. A. Weaver, C. Cheh, E. J. Rogers, W. H. Sanders, and D. Gammel, “Toward a
cyber-physical topology language: Applications to nerc cip audit,” in Proceedings of the
First ACM Workshop on Smart Energy Grid Security, ser. SEGS ’13. New York, NY,
USA: ACM, 2013. [Online]. Available: http://doi.acm.org/10.1145/2516930.2516934
pp. 93–104.

[9] E. Rogers, W. Rogers, and G. A. Weaver, “Badger: The Networked Security State
Estimation Toolkit,” in Proceedings of BlackHat USA. BlackHat, August 2014.

[10] E. Schultz, “A framework for understanding and predicting insider attacks,”
Computers and Security, vol. 21, no. 6, pp. 526–531, Oct. 2002. [Online]. Available:
http://dx.doi.org/10.1016/S0167-4048(02)01009-X

95

[11] M. L. Collins, D. Spooner, D. M. Cappelli, A. P. Moore, and R. F. Trzeciak, “Spotlight
On: Insider Theft of Intellectual Property Inside the United States Government Involv-
ing Foreign Governments or Organizations,” Software Engineering Institute, Technical
Note, 2013.

[12] A. Cummings, T. Lewellen, D. McIntire, A. Moore, and R. Trzeciak, “Insider Threat
Study: Illicit Cyber Activity Involving Fraud in the U.S. Financial Services Sector,”
Software Engineering Institute, Special Report, 2012.

[13] M. Salem, S. Hershkop, and S. J. Stolfo, “A survey of insider attack detection research,”
in Insider Attack and Cyber Security: Beyond the Hacker. Springer, 2008, pp. 69–90.

[14] A. Patel, M. Taghavi, K. Bakhtiyari, and J. C. Jnior, “An intrusion detection and
prevention system in cloud computing: A systematic review,” Journal of Network
and Computer Applications, vol. 36, no. 1, pp. 25 – 41, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S108480451200183X

[15] I. Corona, G. Giacinto, and F. Roli, “Adversarial attacks against intrusion detection
systems: Taxonomy, solutions and open issues,” Information Sciences, vol. 239, pp.
201–225, 2013.

[16] S. More, M. Matthews, A. Joshi, and T. Finin, “A knowledge-based approach to in-
trusion detection modeling,” in Security and Privacy Workshops (SPW), 2012 IEEE
Symposium on. IEEE, 2012, pp. 75–81.

[17] National Cybersecurity and Communications Integration Center, “Combating the in-
sider threat,” U.S. Department of Homeland Security, Technical Publication, 2014.

[18] A. K. Jones and R. S. Sielken, “Computer system intrusion detection: A survey,”
Department of Computer Science, University of Virginia, Tech. Rep., 2000.

[19] Anomaly Detection at Multiple Scales (ADAMS) Broad Agency Announcement
DARPA-BAA-11-04, Defense Advanced Research Projects Agency 2010, Arlington, VA.

[20] T. Senator, H. Goldberg, A. Memory, W. Young, B. Rees, R. Pierce, D. Huang,
M. Reardon, D. Bader, E. Chow, I. Essa, J. Jones, V. Bettadapura, D. Chau,
O. Green, O. Kaya, A. Zakrzewska, E. Briscoe, R. Mappus, R. McColl, L. Weiss,
T. Dietterich, A. Fern, W.-K. Wong, S. Das, A. Emmott, J. Irvine, J.-Y. Lee,
D. Koutra, C. Faloutsos, D. Corkill, L. Friedland, A. Gentzel, and D. Jensen,
“Detecting insider threats in a real corporate database of computer usage activity,”
in Proceedings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’13. New York, NY, USA: ACM, 2013.
[Online]. Available: http://doi.acm.org/10.1145/2487575.2488213 pp. 1393–1401.

[21] A. Memory, H. Goldberg, and T. Senator, “Context-aware insider threat detection,” in
Proceedings of the Workshop on Activity Context System Architectures, 2013, pp. 44–47.

96

[22] W. Young, H. Goldberg, A. Memory, J. Sartain, and E. Ted, “Use of domain knowledge
to detect insider threats in computer activities,” in Security and Privacy Workshops
(SPW), IEEE. IEEE, 2013, pp. 60–67.

[23] T. Senator, H. Goldberg, and A. Memory, “Distinguishing the unexplainable from the
merely unusual: Adding explanations to outliers to discover and detect significant
complex rare events,” in Proceedings of the ACM SIGKDD Workshop on Outlier
Detection and Description, ser. ODD ’13. New York, NY, USA: ACM, 2013. [Online].
Available: http://doi.acm.org/10.1145/2500853.2500861 pp. 40–45.

[24] R. Mitchell and I.-R. Chen, “A survey of intrusion detection techniques for
cyber-physical systems,” ACM Comput. Surv., vol. 46, no. 4, pp. 55:1–55:29, Mar.
2014. [Online]. Available: http://doi.acm.org/10.1145/2542049

[25] M. Maloof and G. Stephens, “elicit: A system for detecting insiders who violate need-
to-know,” in Recent Advances in Intrusion Detection, ser. Lecture Notes in Computer
Science, C. Kruegel, R. Lippmann, and A. Clark, Eds. Springer Berlin Heidelberg,
2007, vol. 4637, pp. 146–166.

[26] T. Berners-Lee, “Linked data,” 2009. [Online]. Available:
http://www.w3.org/DesignIssues/LinkedData.html

[27] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, Eds., The
Description Logic Handbook: Theory, Implementation, and Applications. New York,
NY, USA: Cambridge University Press, 2003.

[28] M. Krötzsch, F. Simanč́ık, and I. Horrocks, “A description logic primer,” CoRR, vol.
abs/1201.4089, 2012. [Online]. Available: http://arxiv.org/abs/1201.4089

[29] M. Aranguren, E. Antezana, and R. Stevens, “N-ary relationship,”
Ontology Design Patterns Public Catalog, 2009. [Online]. Available:
http://www.gong.manchester.ac.uk/odp/html/Nary Relationship.html

[30] World Wide Web Consortium (W3C), “Defining n-ary relations on the semantic web,”
W3C Working Group Note, 2006. [Online]. Available: http://www.w3.org/TR/swbp-
n-aryRelations/

[31] C. A. Gunter, D. Liebovitz, and B. Malin, “Experience-based access management: A
life-cycle framework for identity and access management systems,” IEEE security &
privacy, vol. 9, no. 5, p. 48, 2011.

[32] World Wide Web Consortium (W3C), “OWL 2 web ontology lan-
guage document overview,” W3C Recommendation, 2012. [Online]. Available:
http://www.w3.org/TR/owl2-overview/

[33] R. Shearer, B. Motik, and I. Horrocks, “Hermit: A highly-efficient owl reasoner.”
in OWLED, ser. CEUR Workshop Proceedings, C. Dolbear, A. Ruttenberg, and
U. Sattler, Eds., vol. 432. CEUR-WS.org, 2008. [Online]. Available: http://dblp.uni-
trier.de/db/conf/owled/owled2008.html

97

[34] World Wide Web Consortium (W3C), “OWL 2 web ontology language
profiles (second edition),” W3C Recommendation, 2012. [Online]. Available:
http://www.w3.org/TR/owl2-profiles/

[35] A. Lumsdaine, L.-Q. Lee, and J. G. Siek, The Boost Graph Library: User Guide and
Reference Manual. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
2002.

[36] D. Raggett, “HTML Tidy library project,” 2004. [Online]. Available:
http://tidy.sourceforge.net

98

