
c© 2015 Fangzhou Yao

SECURE FRAMEWORK FOR VIRTUALIZED SYSTEMS WITH DATA
CONFIDENTIALITY PROTECTION

BY

FANGZHOU YAO

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Adviser:

Professor Roy H. Campbell

ABSTRACT

Benefits have been claimed by adopting virtualization techniques in many

fields. It could significantly reduce the cost of managing systems, including

critical systems used in cyber power grid. However, in such environments,

multiple virtual instances run on the same physical machine concurrently, and

reliance on logical isolation makes a system vulnerable to attacks. Virtual

Machine Introspection techniques show effectiveness in building a more secure

virtualized environment, since they simplify the process to acquire evidence

for further analysis in this complex system.

However, the VMI technique breaks down the borders of the segregation

between multiple tenants, which might lead to the disclosure of cloud tenants’

data. This potential threat becomes a concern for virtual instances running

critical systems, and hence it should be avoided in a public cloud computing

environment. The disclosure of data could happen easily due to compromised

connections, both inside and outside of the cloud, and the misuse of the cloud

administrator’s authorization.

Thus, in this thesis, we focus on building a secure framework, CryptVMI,

to address the above concerns. Our approach maintains a client application

on the user end to send queries to the cloud, as well as parse the results re-

turned in a standard form. We also have a handler that cooperates with the

introspection applications in the cloud infrastructure to process queries and

return encrypted results. The introspection application is able to extract in-

formation reflecting the behaviors of the guest systems. It also demonstrates

its ability to restore processes upon unexpected modification from the remote

user.

This work shows our design and implementation of this system, and the

benchmark results prove that it does not incur much performance overhead.

ii

To my parents, my grandparents and my uncle, for their love and support.

iii

ACKNOWLEDGMENTS

I am using this opportunity to express my gratitude to everyone who sup-

ported me throughout my Master’s study in Computer Science.

I am thankful for my advisor, Prof. Roy H. Campbell, for his aspiring guid-

ance and continuing support. I would like to thank Mirko Montanari, Read

Sprabery, John Bellessa and Mayank Pundir for their help on my projects. I

am sincerely grateful to other members in System Research Group for shar-

ing their truthful and visionary views during the weekly group meetings.

Finally, I would like to thank my family and friends for their support and

love. My graduate studies have been supported through funding from Trust-

worthy Cyber Infrastructure for the Power Grid (TCIPG) and Assured Cloud

Computing (ACC).

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Situation Awareness . 1
1.2 Thesis Contribution . 3
1.3 Thesis Organization . 3

CHAPTER 2 BACKGROUND . 4
2.1 Case Study on Critical System Security 4
2.2 Related Work . 6

CHAPTER 3 SYSTEM DESIGN . 8
3.1 Threat Model . 8
3.2 CryptVMI in the Cloud . 10
3.3 Policy Examiner at the Remote End 16

CHAPTER 4 IMPLEMENTATION DETAILS 19
4.1 Simulation to the Public Cloud 19
4.2 Cloud API . 19
4.3 CryptVMI . 20
4.4 Virtual Machine Monitor . 20
4.5 Virtual Machine Introspection Library 21
4.6 Virtual Machine Introspection Use Cases 21

CHAPTER 5 EVALUATION . 24

CHAPTER 6 CONCLUSION AND FUTURE WORK 28

REFERENCES . 29

v

CHAPTER 1

INTRODUCTION

1.1 Situation Awareness

The cloud computing becomes popular its power, as the size of data be-

ing stored and processed in industry is increasing drastically. Building and

maintaining storage as well as computation infrastructures become trivial in

a cloud environment. Some companies build their own private cloud services,

and other companies including Netflix [1] and Dropbox [2], tend to use pub-

lic cloud services, such as Amazon Web Services (AWS) [3]. Virtualization

has turned out to be necessary in both private and public cloud comput-

ing solutions, because it provides better utilization of resources and reduces

the cost by allowing multiple instances of operating systems (OS) owned by

multiple tenants to run concurrently on the same physical machine. Bene-

fits have been also shown by adopting virtualization techniques in the cyber

power grid [4], such as migrating Supervisory Control and Data Acquisition

(SCADA) systems into a virtualized environment. Since VMs share the same

hardware resources, the Virtual Machine Monitor (VMM) is able to reduce

redundancy for multiple similar SCADA systems. Though multiple OSes are

running in their own virtual machines (VM) and sharing the same physical

infrastructure, the VMM can still ensure high availability for users [5].

However, sharing the same physical resources brings up security issues.

Even though a VM should only be allowed to access its own resources by de-

sign, the traffic between VMs essentially breaks down the physical isolation.

The logical isolation in cloud environments is built in the software layer and,

consequently, the security guarantees are weaker [6]. A compromised VM can

easily and quickly spread malware and make the entire system vulnerable to

more attacks. Moreover, it takes time for cloud service users to detect those

compromises.

1

While traditional security systems, such as Intrusion Detection Systems

(IDS), are able to enforce policies on every node in a network system and

detect violations in real-time, the virtualization framework makes cloud envi-

ronments complex, and hence it is difficult to collect evidence in such systems.

These facts lead to the development of Virtual Machine Introspection (VMI)

techniques. VMI tools inspect a VM from a trustworthy outside environ-

ment. The outside environment usually refers to the host system and it is

protected with techniques, such as Trusted Platform Module (TPM) protec-

tion, so users are able to access the entire system and acquire the genuine

information of a VM to describe the state of the guest system [7]. IDSes can

be built with this technique in the cloud for greater attack resistance, while

providing an excellent view of the states in VMs [8].

Though using VMI is a simple and convenient approach for cloud users

to acquire trustworthy information from their running VM instances, the

inflexibility to integrate with existing security monitoring systems and the

possibility of exposing confidential information from VMs makes it difficult

to apply this technique in the cloud. There are many private cloud infras-

tructures that have embedded VMI into their systems to enhance security

[9], but those VMI frameworks are customized to specific environments, mak-

ing it difficult to use them in cooperation with existing security monitoring

systems, such as Bro IDS [10]. Concerns are also raised for public cloud

systems, since the VMI technique might break down the borders of the seg-

regation between multiple tenants [11]. Companies running their services on

public cloud infrastructure would not want to expose their application states

to the cloud service provider. Moreover, even in a private cloud, the misuse

of administrative authorizations might lead to more attacks [12], and hence

any opportunities that could be exploited to examine VM states, even by the

cloud administrators, should be minimized. This is especially important for

a cloud environment running critical systems like SCADA systems for the

power grid. Thus, the necessity is obvious to build a secure framework based

on VMI for critical systems, which is able to detect attacks effectively and

provide self protection functionalities. Such a framework makes the systems

running inside observable and easy to manage. The framework should be

performant, as many critical systems are used in metering large amount of

real-time data [4].

Therefore, we propose CryptVMI, an secure framework built with VMI

2

techniques, to provide cloud tenants complete status of their virtual in-

stances, while keeping confidentiality from possible attackers, including ad-

ministrators of cloud services. This system also provides users semistructured

outputs as results, which could be extended to work with its built-in and

other existing security monitoring systems, on the user end to provide better

security for their systems, especially when their cloud computing frameworks

are running in the public cloud. With the semistructured outputs, users are

able to examine the entire states of their VMs from the remote end, even if

it is a mobile device. This framework does not require any modification to

the network interface of applications connected to guest systems. It also pro-

vides an effective strategy to restore processes upon unexpected modification

to the VM.

1.2 Thesis Contribution

We design and implement this secure framework based on Virtual Machine

Introspection system techniques to provide a simple interface with semistruc-

tured data for users to extend this system with other security monitoring

systems. We show that CryptVMI keeps confidentiality of users’ information

from their VMs in the whole encrypted VMI process. We demonstrate that

our encryption scheme introduces minimum overhead to system performance.

Furthermore, our built-in policy examiner on the remote end is able to ef-

fectively monitor violations happened in a guest system based on user defined

policies, and restore modified processes by attacks.

1.3 Thesis Organization

The rest of this work is organized as follows. We first explain our motivation

of proposing such a framework with case studies and summarize related works

in Chapter 2. Next, we show the big picture of our framework along with

its design in Chapter 3 and implementation details in Chapter 4. We then

evaluate it through various experiments and analyze the results in Chapter

5. In Chapter 6, we conclude our work and discuss future approaches.

3

CHAPTER 2

BACKGROUND

2.1 Case Study on Critical System Security

Compromised critical systems could lead to destructive results. SCADA

systems are one type of most widely used critical systems in the world. If such

systems are modified or turned off in a power plant and grid, power generation

and transmission could be suspended due to attacks, and hence the attacks

might even destroy the physical power infrastructure and become a serious

threat to human life. In this section, we show possible attacks in SCADA

systems with real world cases, and also summarize the significant properties

that a framework should have in order to guarantee SCADA systems running

in a secured environment.

2.1.1 Stuxnet

Stuxnet is the first known worm targeting specific infrastructure like elec-

tricity grids, It is very different from other types of worms. Unlike other

applications running in an Operating System (OS) with anti-malware soft-

ware installed, SCADA systems are monitored by Programmable Logic Con-

trollers (PLC). PLCs control critical systems with strict security limits. It is

difficult to attack a PLC, because it is usually written in a specific language.

However, Stuxnet is able to exploit the vulnerabilities of OSes to target those

that construct the PLCs. It injects malicious code into the PLC and hence

makes it compromised [13]. Thus, it is able to take control of SCADA sys-

tems. The main reason for the successful attack of Stuxnet back in 2010 is

that the softwares for PLCs are not well-defined [13]. Thus, we believe that

any computer framework that runs, monitors, or creates softwares, could be

resilient. The frameworks should be always actively maintained and moni-

4

tored; It should be also simple enough, as it is shown that more lines of codes

of a program would introduce more vulnerabilities.

In addition, Stuxnet could take advantage of the vulnerabilities of OSes. It

takes zero-day vulnerabilities to initiate its attack, and those vulnerabilities

are usually not noticed until the attack. Moreover, the attacker is able to

hide all related malicious processes, which prevents detection of its presence.

Since it is difficult to cover every single corner of an OS to prevent zero-day

attacks, there are some zero-day protection techniques were developed based

on policy conformance frameworks and they demonstrate the effectiveness

in the scope of keeping integrity of a system. Therefore, the monitoring

framework for a critical system should be able to provide warning of zero-

day attacks. This also requires the monitoring framework to be resilient and

trustworthy continuously.

2.1.2 Shamoon

Shamoon is known as the most destructive post-Stuxnet discovery for SCADA

systems, which attacked 30,000 workstations and caused the company to

spend a week to restore their systems [14]. It corrupts files on a compro-

mised computer and overwrites its Master Boot Record (MBR). During its

spreading stage, Shamoon’s wiper component embeds or disguises itself into

system executables.

Thus, we want to detect the infected processes in a critical system in time,

and restore any of them to its secured state if possible. Furthermore, we

would like to keep evidence for infected processes for later investigation.

In summary, the framework for a critical system should be able to provide

genuine data describing an entire view of the critical system. This fact re-

quires the monitoring framework to be trustworthy all the time. It is also

required to restore the system to a clean state upon attacks. Several types of

approaches have been discussed. Some research focuses on enhancing secu-

rity by adding additional security layers into the system, such as creating a

middle layer using security-enhanced Linux between SCADA systems and the

external network [15], but it makes the whole system complicated with the

additional layers and hence incurs a performance overhead. Others manage

5

to acquire evidences to detect attacks, such as the digital forensics framework

Forenscope [16], which is effective in obtaining a complete state of the entire

system with trustworthy information, but it needs to reset and restore both

the hardware and software states.

We have sufficient reasons to build a secure framework to run and monitor

critical systems. It should be resilient and simple. The data extracted from

this framework should be trustworthy so as to reveal an accurate represen-

tation of the monitored parameters. Moreover, it should be able to restore

the system to a secure state to neutralize attacks.

2.2 Related Work

Checking the state of a system insides of a cloud environment as a whole

is hard. It requires the security monitoring system to be located on the

host, but this approach makes the security system susceptible to attacks.

Alternatively, if we deploy the monitoring systems in the network, the view

will be limited [8]. Livewire takes advantage of VMI techniques to retain

the full view of a host-based IDS, but pulls the IDS outside of the host,

namely the node in a network, for greater attack resistance [8]. In addition

to visibility, an input framework built on top of Bro IDS was presented for

flexibility and scalability. It provides a simple yet flexible user interface

and support for asynchronous operation, which enables an IDS to analyze

high-volume packet streams under soft real-time constraints [17]. Odessa

also proposed a solution to build a resilient policy compliance system in

the network. It is designed to distribute the evaluation of rules in a scalable

fashion, which employs a set of monitoring agents on the nodes in the network

and validates global rules in their corresponding verifiers [18]. Thus, we want

to collect the evidence from the OS directly, while keeping the security system

in a safe state. Furthermore, the evidence obtained should be standardized

in a simple form for users or other security monitoring systems, like an IDS.

The evidence should be also available for multiple analysis frameworks for

stronger resilience.

Nowadays, many users start using cloud services due to the benefits of

a flexible and elastic infrastructure. Virtualization techniques and bridged

networks are widely used in such environments, which make the system even

6

more complicated. It also leads to more security concerns, such as the weak-

ened isolation and possible misuse of administrative permissions. We can

use VMI tools to simplify this complex system, and obtain the entire state

of a VM from the safer outside, namely the Dom0 or host for virtual systems

running on Xen or KVM, respectively. However, many companies pay for

public cloud services to store their data and run computational applications,

because of the ease of configuration and maintenance. Thus, the concern for

confidentiality becomes inevitable. For instance, if Amazon started providing

VMI features for its cloud users, then the administrators in Amazon would be

able to access the entire state of every customer’s VM running in their public

cloud. This is definitely not what Amazon’s customers want to happen with

respect to their privacy. Furthermore, running critical systems in the public

cloud would become an ethical issue due to this possible disclosure of data.

Even in a private cloud, the possible misuse of administrative permissions is

also a serious security problem. Thus, we want to collect data with simple

VMI techniques from VMs through the complex cloud framework, but we

also want to keep the confidentiality of any sensitive information obtained

during this process.

Therefore, a secure framework in the cloud, which is able to respond to

queries from multiple users or security monitoring systems with simple and

standardized results would be beneficial. The concern for credibility of data

gathered is minimized and the data can be as much as the whole picture of

a VM, since VMI work is processed in a trustworthy outside environment.

In addition, the queries to VMs and returned results should be encrypted to

address the concern of the possible leakage of users’ data.

7

CHAPTER 3

SYSTEM DESIGN

3.1 Threat Model

In a cloud environment, the compute node should not be easily compromised.

Hence, systems running VMs are trustworthy environments. This guarantees

that the information gathered using VMI is genuine. If the compute node,

which is essentially the host system in a virtualized environment, is compro-

mised, it may result in misleading data. However, this should rarely happen.

The host systems in the cloud should be protected by TPM, and hence the

integrity is usually guaranteed. Nowadays, labeling technique is also widely

used, so that all processes and files in a system are labeled in a way that rep-

resents security information. Labeling also works in our framework. Though

the native support for feature in Linux, like SELinux, is usually disabled for

better VMI integration [19], most hypervisors still provide their own schemes

for labeling, such as Xen Security Modules (XSM) for Xen [20]. Also, since

the host system Dom0 is essentially a VM on Xen hypervisor for management

purposes, the security of a host system mainly depends on the VMM. It is

obvious that VMM could be also seen as an OS, but it is significantly sim-

pler than standard modern OSes, which has been within 30 thousand lines

of code [8]. Moreover, in a mature commercial public cloud service system,

cloud service providers also utilize state-of-the-art electronic surveillance and

multi-factor access control systems with a 24/7 monitoring service [3]. Thus,

a VMM is much more difficult for an attacker to compromise.

We also assume that the VM running in a compute node might be totally

malicious. The impact of a malicious VM is still trivial in this case, since we

can obtain the entire genuine state of the VM and detect the problem in time.

For instance, inside of the malicious VM, a malware might be able to hide

itself from a user’s inspection, such as the ps aux command, but it cannot

8

remove itself from the processes list of the OS running in the VM, otherwise

it will not be effective. Even if attackers can exploit a compromised VM and

manage to attack the VMM, VMMs like Xen [21] and KVM [22] are able

to defend against such attacks with their own security mechanisms. In the

worst case, the security of the cloud system will still detect the attack, though

it might result in the loss of their data and suspending of their services for

cloud users.

Users can access their VMs through a secure connection, such as Secure

Shell (SSH), which should be secure enough to avoid most man-in-the-middle

attacks if the SSH keys are not obtained by attackers. However, connecting

to a compromised VM from the remote end might lead to the infection of

users’ machines. We expect that users have anti-malware programs on their

own OSes.

Furthermore, we presume that co-location attacks [23] might happen. Thus,

we do not want to expose the structure of our cloud system to users, such as

on which compute node a VM is located, or the IP address of the node. This

approach should minimize the chances for such attacks, and it also keeps

transparency to users.

Our objective is to prevent potential attackers, including cloud adminis-

trators, from knowing the entire state of a user’s VM. The disclosure could

happen due to the compromised connection between the remote user and the

cloud, or the compromised internal connections inside of the cloud as well as

the misuse of the cloud administrator’s authorization.

In our framework, VMI applications are set up with root authorization.

We assume that the normal administrators of the public cloud system do not

have root authorization on compute nodes, since there would be no need for

the cloud administrators to gain such authorization, once the cloud has been

configured and securely booted with TPM. This assumption is reasonable in

reality for a public cloud, as they are in a group with only limited permissions

interacting with the cloud service application programming interfaces (API)

and VMs, otherwise the administrator can install their own VMI tools, even

bypassing the logs in a cloud system. Therefore, configuration files and keys

stored with root permission for CryptVMI also stay safe. As it is shown in

Table 3.1, the access permissions are categorized for various types of contents.

9

Table 3.1: Access Permissions in CryptVMI Framework

Content for Access VMI Framework Admin User
Running at root Yes No No

Cloud Tenant Info No All Only own tenants
VM Location Info Yes Yes No

VMI Keys All No Only own paris
Data in VMs All No Only own VMs

3.2 CryptVMI in the Cloud

In this section, we present concepts that we used to design CryptVMI, as well

as the architecture for this VMI system. First, we show show the architecture

of this system. Second, we discuss how we can guarantee the integrity of the

host system with TPM. Third, we discuss the interface that we used for

users’ queries and results. Forth, we describe our encryption and decryption

scheme. Last, we explain why network transparency for a guest system to

its connect external applications or sensors is necessary.

3.2.1 Architecture

The design of CryptVMI has three major components. Figure 3.1 shows

the overview of this framework. Dotted lines represent secure connections or

connections with encrypted components. There is only one remote user and

one compute node shown, but multiple clients and compute nodes are sup-

ported in our design. The secure connection from the remote cloud tenants

to their owned VMs is not part of the VMI system, but it suggests a general

approach that users communicate with their instances.

The first component is the client application along with the policy examiner

on the remote user end. It accepts queries from users or other security

applications, and directs queries to the handler. It also eventually decrypts

results returned from the cloud. The built-in policy examiner extracts system

information from the client application and monitors the status of guest

systems with user-defined policies. We will explain the methodology that we

used for this examiner in next section. The second component handles queries

sent from the client application. Once the query is processed, the encrypted

10

data is transferred back to the client. The third component involves strategies

to acquire desired results with encryption.

Figure 3.1: A High Level View of the CryptVMI Architecture

User Client

Once a query is accepted, the user client application will assign a unique ID

and a random symmetric key s to this query. The command is encrypted

with the key s, and the key is encrypted with the user’s corresponding public

key c. The client then initiates the request to the management node in the

cloud environment through a Secure Sockets Layer (SSL) connection, whose

address is loaded from the configuration file.

The client application handles the result in its callback function. Once the

result is received, the application first decrypts it with key s and then decodes

it with Base64, if the query is requesting binary data, such as memory dumps.

Eventually, it sends back the data to the query’s origination.

Query’s origination generally includes the built-in policy examiner de-

ployed on the remote end, however other security monitoring systems are

also able to request data from this client in a RESTful fashion. Since the ap-

plication is written in Ruby and might not be run in root, users can modify

11

the code to parse the returned data in different formats, and hence make it

easy to cooperate with various applications, such as IDSes.

Query Handler

The request received from the client has five parts: the unique ID of the

query, the user’s information including the credential token, VM instance

name in the cloud system, symmetric key s encrypted with user’s public key

c and the command encrypted with key s. Once the handler receives this

request, it first checks the user’s token and the instance name with the cloud

service API to verify if there is such a VM associated with this tenant, and if

this user has access to the requested instance in the cloud. The handler then

uses the cloud service API to locate the IP address of the compute node that

holds the designated VM, and obtains this VM’s name to the hypervisor. The

name of a VM to the hypervisor is usually different from its instance name

provided from the cloud service API to the user, and hence this mapping

becomes necessary.

Communications in this process are not encrypted, because they are in the

internal cloud system network, and the cloud administrator should already

know the unencrypted information such as the name of the VM. Since the

command and the key s are encrypted, the details will not be disclosed. In

addition, the command is essentially a JSON document inside of the request,

and hence it is flexible with various parameters. Thus, a new request is sent

to the introspection application on the corresponding compute node.

Finally, the query handler sends the encrypted result data back to the

client.

Introspection Application

The introspection application manages users’ private keys, and hence it de-

crypts the key s with the the specific user’s private key d. Thus, it is able

to decrypt the command message. The introspection application translates

the message and invokes corresponding VMI tools built on top of the VMI

library to acquire desired results.

Results are then encrypted with the symmetric key s and transferred back

to the query handler.

12

Though all three components are written in Ruby, the client application

does not have to be run in root, since the users usually take control of their

own machines and there are only the public keys stored at the their end. Each

of these components is described in following subsections. Additionally, there

is a series of VMI tools deployed on compute nodes, which are written in C.

3.2.2 Trusted Platform Module

TPM is enabled on both the compute nodes and management nodes in order

to assure the integrity of the platform. It guarantees a system to start the

boot process from a trusted condition, until the OS has completely booted

and applications are running [24].

TPM also contains several Platform Configuration Registers (PCR), which

enable the secure storage and is able to report security metrics. The metrics

can be used to detect changes in the system. Thus, utilizing TPM is able

to assure platform integrity, which provides us a trustworthy host system for

our VMI operations on guest systems.

3.2.3 Flexible and Simplified Interface

We want our interface for users or other security monitoring systems to

achieve good performance and scalability. Also, the query should be simple

and easy to write, while the result is standardized and flexible. Additionally,

considering that data transmission through the network is a major part of

our system, we want to reduce the network throughput.

RESTful API

Representational State Transfer (REST) is a data style designed for modern

web and distributed applications. It ignores the details of component imple-

mentation and protocol syntax, in order to provide better performance and

scalability of component interactions [25].

Many applications nowadays are using this type of API style, including

IDSes [26]. This fact makes our VMI system easily extendable to other

security systems, including the built-in policy examiner. We simply accept

13

HTTP POST requests in an asynchronous fashion.

Query and Result in JSON

We use Javascript Object Notation (JSON) for queries and results. Its

semistructured schema makes JSON flexible for various types of data, since

it does not have a regular structure [27]. Attributes in a JSON document

are self-described, and hence it is clear for users to understand and easy to

write. It also simplifies the structure of the document, compared to XML.

Thus, using JSON reduces the throughput when transmitting data over the

network.

A simple example of query in JSON from users or other security applica-

tions would be like below.

{

"user": "[token]",

"vm": "[vm_name]",

"command": { ... }

}

The result is similar, but binary data, such as the memory dump, is en-

coded with Base64 [28].

3.2.4 Encryption and Decryption

Since the query itself might disclose the information [29], such as the pid,

we should encrypt both the query and result. We use a generated symmetric

key as the session key to encrypt and decrypt parts of the query and the

result. Moreover, each user has a unique pair of public and private keys.

We use the public key on the user end to encrypt the symmetric key, while

decrypting it with the private key stored in the VMI application end. Each

query session is associated with a unique random symmetric key. Figure 3.2

shows our encryption scheme.

We use this scheme for two reasons. One reason is that public key encryp-

tion, namely the asymmetric key encryption, does not support encryption for

large data by itself [30]. Thus, this scheme allows us to encrypt large data,

14

Figure 3.2: Encryption Scheme Used in CryptVMI

such as a 1GB memory dump, and achieve the nearly equivalent security

level as the asymmetric key encryption. CryptDB uses similar approach to

allow for query execution on an encrypted datastore [29]. The other reason is

for performance. RSA is not as performant as symmetric encryption schemes

[30]. Additionally, modern Intel processors have embedded AES symmetric

key encryption hardware accelerators, and applications can benefit greatly

from using AES on these processors [31].

3.2.5 Network Transparency

In our framework, the guest systems is connected to the external network for

their general purposes, such as a SCADA applications connect to external

power grid applications and sensors. However, the remote end running those

applications and sensors should be able to access the SCADA systems running

in guest systems, namely DomUs, and hence the VM inside of this framework

should provide an interface for connections from the outside. Moreover, the

remote end users should not discover that the SCADA system is in a VM

and they should be able to access it as usual. Thus, we need to connect

the two segments of networks together. We use the bridge scheme provided

by the VMM and OS on the host system, which reconfigures its physical

network into a bridged network. Moreover, adopting this approach could

reduce the chance for co-location attacks, which make it possible for attackers

to attack co-located VMs from a compromised VM, once they detect that

the compromised system is in a VM.

15

3.3 Policy Examiner at the Remote End

In this section, we describe our design for the policy examiner deployed on

the remote end. In Figure 3.1, we show that both the policy examiner and

other applications and sensors for general purposes are on the same node.

However, in the real world, they do not necessarily have to be on the same

machine.

3.3.1 Architecture

The design of the Policy Examiner has two major components. Figure 3.3

shows the overview of this system.

Figure 3.3: The Architecture of the Remote End

The first component is the monitor. It calls the client application to exam-

ine states of DomUs and keeps monitoring the VM with policies defined in the

database in a certain time period. It also records critical events into database

when a violation is detected. The second component is the database, which

stores policies and records the critical events.

16

3.3.2 Policy-Based Monitoring

We use VMI techniques to discover the complete state of a VM, since the

genuine and trustworthy data extracted from a VM with VMI is able to

reflect the state of a VM faithfully. Also, the integrity of the host systems,

namely the Dom0s, are protected by TPM. The process and module lists

are two major facts acquired to analyze the critical systems with our policy

examiner, as they are useful to detect hidden processes and modules, which

might be malicious and cannot be detected by introspection from the inside

of a VM.

Processes are one of the most important part in a critical system, such as

SCADA applications in SCADA systems as they monitor the data coming

from the power grid. In order to verify the integrity of such applications,

we focus on their code segments. The code segment of a process is one of

its sections in memory that contains executable instructions. Its size is fixed

and it is usually read-only within the scope of the guest system, though we

are able to modify it from the host system. Thus, a significant characteristic

of an infected program is the change of its code segment. Based on this fact,

we can verify the integrity of a process by comparing the hash value of the

memory dump of its code segment with the one dumped in a clean state.

The dump of the process from a clean state could be handled from a clean

image template, or other systems running with the same OS or applications

that are guaranteed to be secure. If we detect that the hash value is different

from what we have on file for a process, we can restore the process to its

clean state by sending encrypted commands and clean dumps to the cloud.

The VMI application is then able to overwrite the code segment with our

clean dump.

We enforce our security policies in a white list fashion. Users are able to

define their own policies for entities like processes and modules, and keep

them in the database on the host system. The policy model for each tuple

in the table consists of attributes like module and process names, permitted

users and running time intervals, hash values of the code segments and paths

to their binary dumps processed in a clean state of the VM. The policy

examiner monitors VMs with defined policies in a pre-set time period. Any

violations, such as process names appearing in the process list but not in the

white list, will be reported and recored. Moreover, the tampered process will

17

be detected by the hash value of its code segment. In addition, since we want

to obtain consistent snapshots from a VM, we pause the VM while gathering

its process and module list. However, since the code segment is read-only to

the guest system, dumping code segments does not necessarily need a pause.

3.3.3 Evidence Gathering

In order to reproduce the problems of the system, or any attacks, we record

the critical events with a time stamp into the database upon any violations.

We take a sample of the unexpected modification before restoring it to its

original safe state. For instance, we would dump the code segment of the

infected process and store it, before we restore the process to its clean state.

We only keep the path as part of the record tuple in the database, which

leads us to the infected dump in the quarantine.

18

CHAPTER 4

IMPLEMENTATION DETAILS

4.1 Simulation to the Public Cloud

Systems were set up with a 64-bit CentOS Linux for reliability and simplicity,

since it is an actively maintained Linux variant and its code base is relatively

small. Hash values of processes from the guest systems, were calculated in a

clean VM state with MD5 algorithm. They are stored in a MySQL database

on the remote end.

We set up our experiments with OpenStack to simulate a public cloud

environment. We want to simulate a public cloud in real life, such as Amazon

Web Services (AWS), which uses Xen hypervisor and runs VMs in the para-

virtualization mode [3]. However, the VMs in our cloud system for tenants

were running with full-virtualization enabled with the Xen hypervisor in

order to support unmodified OSes, such as different types of SCADA systems

running on various OSes.

4.2 Cloud API

OpenStack is a popular solution for hosting private clouds developed by

Rackspace and NASA [32]. It has various components addressing necessities

of a cloud system. We deployed the components needed by the controller node

and network node on the same machine, and made it our management node.

Even though the compute node can be the same machine as the management

node, in order to simulate a public cloud environment, we used a separate

machine with the same hardware configuration as our controller node. If

there are multiple compute nodes in this cloud system, each of them should

have its own running copy of the introspection application.

19

The OpenStack APIs are also designed in a RESTful manner, and hence

our CryptVMI applications can communicate with them easily using industry

standard libraries.

4.3 CryptVMI

We implemented the three major CryptVMI components in Ruby for three

reasons. The first reason is its natural affinity with JSON documents, because

the dictionary data structure in Ruby can be easily converted into JSON with

the Ruby gem json. The second reason is that it provides gems, namely the

libraries for Ruby, to help us for faster development. We used Ruby Encrypt

in our symmetric key encryption, which simplified the process and hence we

could only keep a 32-byte random string as the key for the AES-CBC-256-

bit encryption [33]. The third reason is that Ruby is an actively maintained

language, therefore security issues can be fixed in time.

4.4 Virtual Machine Monitor

We used the Xen hypervisor to simulate AWS [3]. It has been usually con-

sidered that Xen is not as secure as KVM [34]. KVM can be less dependent

than Xen, because it is essentially a kernel module [22], while Xen needs to

modify the OS kernel [21]. However, Xen is a better choice in our frame-

work. As it is mentioned in previous chapter and Figure 4.1, the security

for Xen virtualization mainly depends on the bare metal hypervisor instead

of Dom0. Dom0 functions similarly to the host system in KVM, but it is

a para-virtualized VM on Xen hypervisor. In KVM, the host system is the

Linux system and it is obvious that the Linux OS is implemented with much

more lines of code than Xen hypervisor, which might lead to more uncertain-

ties. Furthermore, the VMI library that we utilized requires a patch to KVM

[19], and hence it will make the VMM possibly unreliable, which is what we

want to avoid.

Therefore, we still chose to use Xen as our VMM.

20

Figure 4.1: Virtual Machine Introspection in Xen and KVM

4.5 Virtual Machine Introspection Library

We built our VMI application on top of LibVMI, which inherits features

from XenAccess. XenAccess is designed based on the concepts of virtual

memory introspection and virtual disk monitoring. Consequently, its APIs

allow applications built on top of it to access the memory and disk of a

specific virtual system [35]. It does not require any modification to the

Xen hypervisor, and hence it has small performance and reliability impact.

LibVMI also provides functions for accessing CPU registers, pausing a VM

and printing binary data [19].

Maitland introduces a lightweight VMI system designed specifically to de-

tect malware through packer detection [36]. The system achieves good per-

formance, but it does not allow user to customize their queries. Furthermore,

it is limited to para-virtualization environments.

By building CryptVMI on top of LibVMI, we can have supports for both

fully and para-virtualized environments, and we are able to write introspec-

tion tools for different payloads.

4.6 Virtual Machine Introspection Use Cases

In order to obtain meaningful data from a VM, it is essential to know the

offsets for processes in task_struct. In order to obtain these offsets, we

need to create a kernel module in a VM with a clean state, which should

not be malicious and is usually the initial state of an image template. This

21

is because each version and variant of OSes has various memory offsets [37].

The code below illustrates how to obtain these offsets for VMI applications,

such as those for pid, mm and mm_struct.

struct task_struct *p = current;

pid_offset = (unsigned long)(&(p->pid))

- (unsigned long)(p);

mm_offset = (unsigned long)(&(p->mm))

- (unsigned long)(p);

codeseg_start_offset = (unsigned long)(&(p->mm->start_code))

- (unsigned long)(p->mm);

codeseg_end_offset = (unsigned long)(&(p->mm->end_code))

- (unsigned long)(p->mm);

A two-layer translation to the target address inside of mm_struct could be

processed, with required offsets obtained. Once the process with the desig-

nated pid is found in the iteration of the process list, the VMI application

could obtain the address of mm_struct in its task_struct. The code below

shows then the VMI application is able to access the mm_struct to acquire

the target’s virtual memory addresses, which could be, but not limited to, the

starting and ending addresses of the code segment for a process. In addition,

we can then calculate the size of the code segment using the two addresses,

which is essentially 1+|diffcodeseg|, where diffcodeseg is the difference between

the two addresses.

vmi_read_32_va(*vmi, next_process + mm_offset - tasks_offset,

0, (uint32_t*) &mm_addr);

vmi_read_32_va(*vmi, mm_addr + target_offset,

0, (uint32_t*) &result_addr);

As it is shown in the code below, the VMI application uses the virtual

addresses to read the segments and then write them to files. This uses

the LibVMI’s built-in translation from the virtual memory address to the

physical address.

vmi_pause_vm(*vmi);

vmi_read_va(*vmi, start_codeseg_vaddr,

pid, buffer, code_size);

22

fwrite(buffer, 1, code_size, code_file);

vmi_resume_vm(*vmi);

The code below shows how we are able to restore the code segment from

a clean dump.

addr_t curr_vaddr = startcode_vaddr;

while (!feof(original_code)) {

fread(file_buffer, 1, 1, original_code);

vmi_read_8_va (*vmi,

curr_vaddr, pid, mem_buffer);

if(*file_buffer != *mem_buffer) {

vmi_write_8_va(*vmi, curr_vaddr,

pid, file_buffer);

}

curr_vaddr ++;

}

Even though the code segment field is read-only, a process might be ter-

minated during the dumping process. In order to acquire consistent memory

reading, the guest system is paused during the memory access.

23

CHAPTER 5

EVALUATION

In our experiments, the user’s client machine, the management node and the

compute node have the same hardware configuration with an Intel Core i7

CPU at 3.40 GHz. The DomU in this experiment, namely the guest system,

is allocated with 1 vCPU and 1GB memory. The same sets of experiments

were conducted 10 times, so the time measurements below are averages.

Figure 5.1: Time Distribution to Extract the Processes List from a VM

Since we want to ignore the time consumed during the network transmis-

sion of data, we benchmarked the code used in CryptVMI for the encryption

and decryption of data. Thus, the total time was the estimated time for

CryptVMI to finish the VMI task without considering network transmis-

sions, while the original time was the time consumed in finishing traditional

VMI tasks. Figure 5.1 shows the results of the average time by running VMI

acquisition for the processes list from a DomU. The overhead introduced is

very little and barely noticed.

Figure 5.2 shows the time spent in dumping and hashing the code segments

of the 1.4KB experiment process, compared to the time for dumping code

24

Figure 5.2: Time Distribution to Dump and Hash Code Segments

segments from all 61 processes inside of the VM. The total time is the sum

of the time spent in dumping and hashing processes. We can see that the

two values are very close. The reason could be two-fold. One is that our

VMI application essentially iterates the complete process list it is instructed

to dump only one process. The other is that the loading time of the VMI

libraries might take a large part of the time spent. Thus, we should be able

to improve our results by caching the starting and ending addresses of code

segments in a hash map, instead of iterating the primitive Linux task_struct

list, namely the process list. However, this works only if processes in the VM

do not change often. Furthermore, if we look at the time spent in calculating

hash values, respectively, they are also similar. This is because the loading

time of the Ruby libraries plays a major role. Though it might take around

0.16s to dump the code segment of a process, since the VMM does not pause

the VM, it should not cause any starvation of tasks from the VMM and the

remote end.

Figure 5.3 shows the time spent in restoring the experiment process. It

involves two steps, hashing to determine if there is a need to restore and

writing from the host system to the process. Thus, the total restoration time

spent includes the time spent in both hashing and restoring the code segment

from the host system disk back to the guest virtual instance. As it can be

observed, the time is equivalent to dumping the code segment. We think

that the I/O operation takes a significant portion of it, but it is still very

performant as they can be done in around 0.18s.

25

Figure 5.3: Time Spent in Restoration

In Figure 5.4, we can see the results of dumping the whole 1GB mem-

ory from a DomU. The encryption and decryption roughly took the same

time as dumping the memory, which was about 10 seconds. We label the

total time for dumping the 1GB memory as the CryptVMI processing time

in Figure 5.5. In this way, we can compare the CryptVMI dumping with

encryption time with the time consumed in transferring the dumped data in

the cloud system and between the remote client and the management node,

respectively. The results show that the CryptVMI processing time is only a

small portion, compared with the time consumed during transmitting data

through networks.

Figure 5.4: Time Distribution to Dump 1GB memory from a VM

26

Figure 5.5: Time Consumed in Data Transmission in Networks and in
CryptVMI

Though the overhead is not much in total, the main reason for this overhead

can be concluded as the slow I/O operations on the disk. Our introspection

application calls the VMI tools to dump the memory. The dump is written

into a file by the VMI tools and then we read the file into memory for Base64

encoding and encryption. Once the data is sent to the user client application,

the user client decrypts it and saves the encrypted dump into a temporary

file. The client then decodes it for users and other applications.

27

CHAPTER 6

CONCLUSION AND FUTURE WORK

This work is based on the author’s past published papers [38, 39, 40]. In

this thesis, we show our design and implementation of CryptVMI, a secure

framework based on Virtual Machine Introspection, to provide flexibility in

its interface to cooperate with other security monitoring systems while keep-

ing the confidentiality of users’ data, especially in the public cloud. It is

able to provide trusted information regarding the complete states of systems,

while keeping network transparency to the connections from the outside. The

policy examiner monitors the critical systems with user defined policies, and

gathers evidence upon violations. Our benchmarks show that CryptVMI

only introduces little overhead in performance. We believe that this solution

is able to address the concerns of the multi-tenancy public cloud, while also

providing an interface for enhanced security.

In the future, we plan to integrate this encryption feature into LibVMI

by modifying the library, instead of relying on application level encryption

schemes. This approach should also increase the performance of our system

as dumps would be then encoded and encrypted in the memory. Eventually,

we want to integrate with more security monitoring systems, such as IDSes,

through our flexible RESTful APIs.

28

REFERENCES

[1] Amazon Web Services, “AWS Case Study: Netflix, [Online],” Available:
http://goo.gl/jrVvI0.

[2] Dropbox, “Where Does Dropbox Store Everyone’s Data?, [Online],”
Available: https://www.dropbox.com/help/7/en.

[3] Amazon Web Services, “Amazon Web Services, [Online],” Available:
http://aws.amazon.com/.

[4] K. Wilhoit, “SCADA in the Cloud: A Security Conundrum?” Trend
Micro Incorporated Research Paper, 2013.

[5] T. Burger, “The Advantages of Using Virtualization Technology in the
Enterprise, [Online],” Available: http://goo.gl/2oqZgo.

[6] M. Factor, D. Hadas, A. Hamama, N. Har’el, E. K. Kolodner, A. Kur-
mus, A. Shulman-Peleg, and A. Sorniotti, “Secure Logical Isolation for
Multi-tenancy in Cloud Storage,” in Proceedings of 30th IEEE Interna-
tional Conference on Massive Storage Systems and Technology, 2013.

[7] K. Nance, B. Hay, and M. Bishop, “Virtual Machine Introspection: Ob-
servation or Interference?” IEEE Security and Privacy, 2008.

[8] T. Garfinkel and M. Rosenblum, “A Virtual Machine Introspection
Based Architecture for Intrusion Detection,” in Proceedings of 10th An-
nual Network and Distributed System Security Symposium, 2003.

[9] J. Konstantas, “VM Introspection: Know Your Virtual Environment
Inside and Out, [Online],” Available: http://goo.gl/Yd4ioQ.

[10] The Bro Project, “The Bro Network Security Monitor, [Online],” Avail-
able: https://www.bro.org/.

[11] C. Brenton, “Introspection: Boon or Bane of Multitenant Security?,
[Online],” Available: http://goo.gl/5aIj6W.

[12] S. Butt, H. A. Lagar-Cavilla, A. Srivastava, and V. Ganapathy, “Self-
Service Cloud Computing,” in Proceedings of 19th ACM Conference on
Computer and Communications Security, 2012.

29

[13] P. Marks, “Why the Stuxnet Worm is Like Nothing Seen Before, [On-
line],” Available: http://goo.gl/KHhvhU.

[14] H. MacKenzie, “Shamoon Malware and SCADA Security? What are
the Impacts?, [Online],” Available: http://goo.gl/V0fSUp.

[15] R. Bradetich and P. Oman, “Connecting SCADA Systems to Corporate
IT Networks Using Security-Enhanced Linux,” in Proceedings of 34th
Annual Western Protective Relay Conference, 2007.

[16] E. Chan, A. Chaugule, K. Larson, and R. H. Campbell, “Performing Live
Forensics on Insider Attacks,” in Proceedings of 2010 CAE Workshop on
Insider Threat, 2010.

[17] B. Amann, R. Sommer, S. Aashish, and S. Hall, “A Lone Wolf No More:
Supporting Network Intrusion Detection with Real-Time Intelligence,”
in Proceedings of 15th International Conference on Research in Attacks,
Intrusions, and Defenses, 2012.

[18] M. Montanari, E. Chan, K. Larson, W. Yoo, and R. H. Campbell, “Se-
cure and Flexible Monitoring of Virtual Machines,” in Proceedings of
26th IFIP International Information Security Conference, 2011.

[19] B. D. Payne, “Simplifying Virtual Machine Introspection Using Lib-
VMI,” Sandia Report, 2012.

[20] X. Project, “Xen Security Modules: XSM-FLASK, [Online],” Available:
http://goo.gl/9WlBQ8.

[21] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,”
ACM Special Interest Group on Operating Systems Review, vol. 37, no. 5,
2003.

[22] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “KVM: the
Linux Virtual Machine Monitor,” Linux Symposium, vol. 1, 2007.

[23] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, You, Get
Off of My Cloud: Exploring Information Leakage in Third-party Com-
pute Clouds,” in Proceedings of 16th ACM Conference on Computer and
Communications Security, 2009.

[24] S. Bajikar, “Trusted Platform Module (TPM) based Security on Note-
book PCs White Paper, [Online],” Available: http://goo.gl/Ya57Wv.

[25] R. T. Fielding and R. N. Taylor, “Principled Design of the Modern Web
Architecture,” ACM Transactions on Internet Technology, vol. 2, no. 2,
2002.

30

[26] M. Rouached and H. Sallay, “RESTful Web Services for High Speed
Intrusion Detection Systems,” in Proceedings of 20th IEEE International
Conference on Web Services, 2013.

[27] D. Crockford, “The Application/JSON Media Type for JavaScript Ob-
ject Notation, [Online],” Available: http://tools.ietf.org/html/rfc4627.

[28] S. Josefsson, “The Base16, Base32, and Base64 Data Encodings, [On-
line],” Available: https://tools.ietf.org/html/rfc4648.

[29] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, “CryptDB:
Protecting Confidentiality with Encrypted Query Processing,” in Pro-
ceedings of 23rd ACM Symposium on Operating Systems Principles,
2011.

[30] L. M. Adleman, R. L. Rivest, and A. Shamir, “Cryptographic Commu-
nications System and Method,” U.S. Patent No. 4,405,829, 1983.

[31] S. Gueron, “Intel Advanced Encryption Standard Instructions Set, [On-
line],” Available: hhttp://goo.gl/2Zp3OW.

[32] Open Stack, “Open Source Software for Building Private and Public
Clouds, [Online],” Available: https://www.openstack.org/.

[33] J. Dwyer, “Decrypting Ruby AES Encryption, [Online],” Available:
http://goo.gl/THA4Sa.

[34] D. Perez-Botero, J. Szefer, and R. B. Lee, “Characterizing Hypervisor
Vulnerabilities in Cloud Computing Servers,” in Proceedings of ACM
International Workshop on Security in Cloud Computing, 2013.

[35] B. D. Payne, M. D. P. de A. Carbone, and W. Lee, “Secure and Flex-
ible Monitoring of Virtual Machines,” in Proceedings of 23rd Annual
Computer Security Applications Conference, 2007.

[36] C. Benninger, S. W. Neville, Y. O. Yazir, C. Matthews, and Y. Coady,
“Maitland: Lighter-Weight VM Introspection to Support Cyber-
Security in the Cloud,” in Proceedings of 5th IEEE International Con-
ference on Cloud Computing, 2012.

[37] R. Love, “Linux Kernel Development 3rd Edition,” Addison-Wesley,
2010.

[38] F. Yao and R. H. Campbell, “CryptVMI: Encrypted Virtual Machine
Introspection in the Cloud,” in Proceedings of 7th IEEE International
Conference on Cloud Computing, 2014.

31

[39] F. Yao, R. Sprabery, and R. H. Campbell, “CryptVMI: A Flexible
and Encrypted Virtual Machine Introspection System in the Cloud,” in
Proceedings of 2nd ACM International Workshop on Security in Cloud
Computing, 2014.

[40] F. Yao and R. H. Campbell, “SafeBox: SCADA Systems in a Se-
cure Framework,,” in Proceedings of 5th Analytic Virtual Integration
of Cyber-Physical Systems Workshop, 2014.

32

