

# Password Changing Protocol

# Rehana Tabassum and Klara Nahrstedt

#### Goal

- Power systems use telemetric devices such as sensors and capacitor banks, often located on pole tops,
  - to measure frequency, voltage, and current
  - to locate faults
  - to assess line health
- Technicians get data from these devices by driving a truck near the device, and using a hand-held device to log in to the poletop equipment and download data.
- Telemetric devices are typically secured by simple passwords, known to many users, with the same password often used for a large number of devices.



#### Operator's activity when collecting data:

- 1) Drives truck under each pole (in Wi-Fi range)
- 2) Logs into each telemetric pole device with common password
- 3) Collects necessary readings from each pole device using Wi-Fi
- 4) Moves to next pole
- We seek to define a secure password changing protocol to secure these communications, working within the real-world constraints faced by technicians in the field.
  - This will secure the measurements from unauthorized access. malicious change, and denial of service.

# Research Challenges

- Scalability to a large number of telemetric devices
- Dealing with low computational capacity of telemetric device
- Telemetric devices have limited storage for storing keys
- Telemetric devices are long-lived devices; can't be updated frequently
- Finding all malicious attacks
- Designing solution approach that can thwart all intruder attacks
- Designing cost-effective and computationally efficient solution

#### Research Plan

- Refine design of secure password-changing protocol
- Validate our protocol using real setup
- Conduct threat analysis on our protocol

## **Broader Impact**

- Allow secure access of data at devices in the field level
- Identify responsible operators in case of insider attacks
- Ensure good situational awareness



Identifying attackers among all operators

## **Approach**

- Phase 1: Authentication of operator to handheld device
  - when operator starts driving; re-authenticate when timer expires
  - by verifying
    - CAPTCHA
  - operator's ID, password
- Handheld device stores userID-pw using one-way hash function
- Keys are stored in firmware
- Phase 2: Authentication protocol between handheld device and telemetric device (at each pole location)
  - Step A: Initiation of authentication
  - Send login\_req\_msg = (UserID, Hd<sub>id</sub>,t) To establish the base to calculate P

  - Step B: Generate RAND
    - To avoid masquerade of telemetric device
  - Step C: Calculation of secret salt
    - $salt_{cur,L} = f(salt_{prev,L})$
    - f: pseudorandom generator or fractal function where seed is [Hd<sub>id</sub>||t]
  - Step D: Calculation of P (256 bit)
    - $P = SHA-2(salt_{new,U}, RAND, UserID)$
    - Both devices calculate P
  - Step E: Verification of handheld device
    - Use k MSB of P
  - every message from telemetric device is signed by its own private key
  - every message from handheld device is encrypted by the public key of telemetric device



- Phase 3: Secure communication protocol between telemetric device and handheld device (at each pole location)
  - Data is en/decrypted by shared symmetric key
  - Calculated P(256 bits) is used as symmetric key
  - AES for encryption



#### Result



- Phase-1 execution time ~26 ms
- Phase-2 execution time ~1 sec
- Phase-3 execution time ~(2-5) sec

Setur



# **Interaction with Other Projects**

· Trustworthy Framework for Mobile Smart Meters

### **Future Efforts**

- · Exploring existing picture-based authentication protocols
- Integrating picture-based authentication into current approach



