

State Estimation and Contingency Analysis in a Cyber Adversarial Environment

R. Berthier, R. B. Bobba, C. M. Davis*, K. R. Davis*, T. J. Overbye, W. H. Sanders, S. A. Zonouz\$

Goals

- Study the dependence of power grid applications on cyber infrastructure.
- · Understand the impact of cyber attacks on power grid operations.
- Study the use of cyber sensor information and state along with power system measurements to improve power grid operations.
- Design power grid applications that can leverage cyber sensor information to improve power grid operations.

Fundamental Questions/Challenges

- How does the state of cyber infrastructure impact power grid applications?
- · How do attacks on cyber infrastructure impact power grid operations?
- Is it feasible to jointly utilize cyber and power sensor information to improve operational reliability of the power grid?
- How can we design power grid applications that can utilize both cyber and power sensor information?

Research Plan

- Study the design of integrated cyber-physical state estimation
- · Study the design of integrated cyber-physical contingency analysis.

Cyber-Physical State Estimation

- Co-utilize information from cyber and power networks to (more precisely) determine the state of the cyber-physical system.
- Use combined information state to provide a scalable approach to detecting bad data caused by a cyber event.
- Step 1: Estimate probabilistic state (corrupted vs. non-corrupted) of cyber infrastructure components from IDS alerts using hidden Markov modeling (HMM) and attack graph template (AGT).
- Step 2: Identify impacted power system measurements.
- Step 3: Exclude combinations of most likely corrupted measurements from state estimation and compute residual error.
- Step 4: Identify most likely set of corrupted measurements based on residual error.

Cyber-Physical Contingency Analysis

- Includes cyber component/infrastructure outages during contingency analysis.
- · Takes cyber adversarial events into account.
- Increases the complexity of contingency analysis, especially for N-x criterion.
- Step 1: Using knowledge about cyber and power systems, compute a security index for potential cyber contingencies, considering both likelihood of contingency and its impact.
- Step 2: Estimate probabilistic state (corrupted vs. non-corrupted) of cyber infrastructure components from IDS alerts.
- Step 3: Rank cyber contingencies considering the current probabilistic cyber and physical state and the computed security index.

Broader Impact

- Provide situational awareness about underlying cyber infrastructure.
- Improve resiliency of power grid operations by explicitly taking the state of cyber infrastructure into account.

Interaction with Other Projects

- Specification-based IDSes being developed for power grid infrastructure can feed into this framework.
- Security and robustness analysis of power system applications can feed into this framework as dependency information.

Future Efforts

Consider impacts of false data injection on power system topology processing.

S. A. Zonouz, K. M. Rogers, R. Berthier, R. B. Bobba, W. H. Sanders, T. J. Overbye, "SCPSE: Security-Oriented Cyber-Physical State Estimation for Power-Grid Critical Infrastructures," accepted for publication in *IEEE Transactions on Smort Grid*

S. A. Zonouz, C.M. Davis, K. R. Davis, R. Berthier, R. B. Bobba, W. H. Sanders, T. J. Overbye, "SOCCA: A Security-Oriented Cyber-physical Contingency Analysis in Power Infrastructures," submitted to IEEE Transactions on Smart Grid.

*TCIPG alumni now with PowerWorld Corporation

STCIPG alumni now with University of Miami

