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Goals

e Study the dependence of power grid applications on cyber infrastructure.
e Understand the impact of cyber attacks on power grid operations.

e Study the use of cyber sensor information and state along with power system
measurements to improve power grid operations.

* Design power grid applications that can leverage cyber sensor information to
improve power grid operations.

Fundamental Questions/Challenges

* How does the state of cyber infrastructure impact power grid applications?
* How do attacks on cyber infrastructure impact power grid operations?

* |s it feasible to jointly utilize cyber and power sensor information to improve
operational reliability of the power grid?

* How can we design power grid applications that can utilize both cyber and power
sensor information?

Research Plan

e Study the design of integrated cyber-physical state estimation.

¢ Study the design of integrated cyber-physical contingency analysis.
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Cyber-Physical State Estimation

*  Co-utilize information from cyber and power networks to (more precisely) determine
the state of the cyber-physical system.

* Use combined information state to provide a scalable approach to detecting bad data
caused by a cyber event.

e Step 1: Estimate probabilistic state (corrupted vs. non-corrupted) of cyber
infrastructure components from IDS alerts using hidden Markov modeling (HMM)
and attack graph template (AGT).

* Step 2: Identify impacted power system measurements.

e Step 3: Exclude combinations of most likely corrupted measurements from state
estimation and compute residual error.

¢ Step 4: Identify most likely set of corrupted measurements based on residual error.
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Cyber-Physical Contingency Analysis
* Includes cyber component/infrastructure outages during contingency analysis.

e Takes cyber adversarial events into account.

e Increases the complexity of contingency analysis, especially for N-x criterion.

e Step 1: Using knowledge about cyber and power systems, compute a security index
for potential cyber contingencies, considering both likelihood of contingency and its
impact.

e Step 2: Estimate probabilistic state (corrupted vs. non-corrupted) of cyber
infrastructure components from IDS alerts.

e Step 3: Rank cyber contingencies considering the current probabilistic cyber and
physical state and the computed security index.
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Broader Impact

* Provide situational awareness about underlying cyber infrastructure.

* Improve resiliency of power grid operations by explicitly taking the state of cyber
infrastructure into account.

Interaction with Other Projects
¢ Specification-based IDSes being developed for power grid infrastructure can feed into
this framework.

e Security and robustness analysis of power system applications can feed into this
framework as dependency information.

Future Efforts

e Consider impacts of false data injection on power system topology processing.
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