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Problem Space 

Historically
• Un-secure communication
• Slow communication links
• Lack of inclusion of networking and 

computing standard technologies

Trends
• Data collection at control areas  
• High-speed wide area 

communication and computation 
solutions available (optical/SONET, 
multi-core devices, Linux)

• Standard wireless network 
technologies available

• 802.11, 802.15, 802.16, 
Bluetooth

• IP-based protocol solutions available

Challenges
• End-to-end real-time, security, 

reliability, and QoS guarantees

Challenges
• Provision of real-time and 

reliable monitoring, detection, 
alert, and control solutions in 
case of perturbations, 
vulnerabilities, and attacks

• Self-adaptation to new security 
needs due to long-lifetime 
installed base (RTUs)

• Handling of adversarial threats 
to end devices (IEDs), control 
centers, ISOs, & communication 
links among them
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Vision: QoS-enabled End-to-End Trust Provisioning 
for Power Grid Monitoring and Control
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End-to-End Trusted Protocol Stack Classification 
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Security/Trust Requirements: Substations 

• Sensing
– Need secure, robust, 

inexpensive, accurate, and 
desired resolution of sensory 
data

• Real-Time Control
– Need control under computation 

and communication constraints
• QoS-enabled Communication

– Need real-time, secure, scalable 
communication of sensory data

• Alert and Containment
– Need to alert higher levels and 

neighbors in case of 
viruses/worms and other 
possibly undesirable software 
changes

– Need to contain the spread of 
undesirable effects
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Security/Trust Requirements:  
Substations - Control Center 

• Prevention Against Failures
– Need to prevent failures due 

to broken links and routers
– Need to prevent failures due 

to timing errors
• Prevention Against Attacks

– Need to prevent denial-of-
service attack

– Need to prevent attacks from 
authorized participants due 
to infiltration of the systems 
or intentional misbehavior

– Need to prevent 
unauthorized commands and 
spoofed data

– Need to prevent 
unauthorized disclosure of 
sensitive information
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internet
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Security/Trust Requirements: Control Center - ISO 

• Informed Authorization: 
– Need to consider many employees, subcontractors, and complex 

relationships between control domains
– Need to increase/maintain information flow during emergency
– Need to enforce constraints on resource access

• Trustworthy Standard-compliant PKI Tools
– Need number of smaller PKI deployments
– Need well-understood attribute certificate formats
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End-to-End Trust Protocol Stack Architecture
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Goals: Protocols in Substations

• Scalable Physical Layer 
Communication
Architecture for real-time 
control and monitoring 

• Emergency Control in 
case of transient timing 
failures

• QoS-aware Cross-layer 
Protocol Stack over 
802.11

• Alert and Attack 
Containment Framework
for monitoring, detection, 
and isolation of software 
viruses/worms-infected 
SCADA nodes under 
communication and false 
alarm constraints
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Goals: Protocols Between Substations 
and Control Center

• TCIP communication 
middleware
– Security with support of 

QoS  and availability
– Adaptability in the face of 

both cyber and power 
disruptions

• Prevent data blackouts
• Enable adaptation by 

data load-shedding
• Enable contingency 

planning in the cyber 
domain

• Dynamic and composable trust 
theory and mechanisms to 
support increased information 
sharing between mutually 
suspicious parties 
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Goals: Protocols Between Control Centers/ISO 

• Trust Negotiation Framework between entities in different security domains with 
– Information sharing between control areas
– On-the-fly federation of systems
– Incorporation of environmental factors into authorization decisions

• Federated Identity and Access Management for Power Grid with
– PKI and credentialing
– Key management to obtain trust and protect keying material
– Tools that are secure and usable
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LAN

Level 3 
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Public/Private Internet

LAN

Trust Negotiation

Credentialing
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Selected Project Overviews

• Tolerating Dynamic Measurement Errors in Sensor 
Networks

• Alert and Attack Containment
• QoS Management and Composable Trust
• Trust Negotiation
• Credentialing

(More details provided in poster session)
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Project: Tolerating Dynamic Time Measurement 
Errors in Sensor Networks

Issues
• Event creates a dynamic measurement error (transient 

timing error) in the sensor network, causing network 
instability if not controlled

• Huge amount of data will be generated by future IEDs
Approach
• Power data characteristics must be understood 
• Performance limits/bounds must be understood due to 

stringent real-time requirements
• Sensor data exhibit strong spatio-temporal coherency due to 

coupling dynamics in the power network; hence, exploiting 
this coherency can help reduce required data traffic

• Timing errors can be mitigated by real-time control
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Results: Fundamental Limits of Sensor Network 
Performance 

Communication requirements are very different depending on the properties 
of the data that need to be communicated!

Incoherent groups

Coherent groups
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Project: Alert and Attack Containment in 
Substations

Vendor    
IEDs
Gateways 

Links
Virus Propagation

SCADA master

3

3

10
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10

10 10

Issues
• When wireless network technology is used, measured IED 

data must be delivered by specified deadlines
• When using wireless network technology, bandwidth constraints occur
• Some IEDs may have erroneous software (virus/worm/..) due to 

external/vendor updates, and measured values may exhibit undesired 
values

• Underlying protocols may distribute the wrong values

10 Undesired IED value
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Approach: Data Aggregation
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Approach: Alert and Attack Container Framework

• Attack Container 
• a logical entity, defined by a group, that keeps track of the behavior of 

nodes in the group, represented by a data structure and corresponding 
operations

• Distributed Monitoring and Attack Detection
• Some IEDs show abnormal behavior, such as unexpected values
• Container entity detects unexpected values and (a) informs peers and CC 

about the strange behavior, and (b) blocks update rights on uninfected 
IEDs until CC resolves the conflict

• Cooperative Response Strategy
• Gateways exchange attack containers and propagate alerts

inject/update

infect

report

alert

stop
external
access

attack container
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Project: QoS and Trust Management between 
Substation - Control Center

• When wide-area standard IP-based network technologies are 
used, specified deadline (QoS) must be met

• QoS-enabled denial-of-service attack 
– Interrupts flow of critical operational data
– Presents timing failures

• Failure of communication resources may occur, hence need to 
prevent and/or contain failures

Issues
• Current control systems (e.g., communication 

between substations and control center) are 
assumed to be isolated, but often may not be
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Approach: QoS Management in GridStat

1. Disjoint-path delay-constrained 
multicast routing

– Protects against unavailability of 
links/routers

2. Per-subscription admission control
– Prevents DoS due to expected and 

authorized load

3. Pre-allocation of resources
– Does not promise resource allocation 

that cannot be delivered

4. Flow policing
– Mistrust clients at the network edges

5. Adaptation
– Prepares for known contingencies
– Tailors communication patterns to 

operational situations via hierarchical 
and global preconfigured operation 
modes

6. QoS-aware packet forwarding
– Makes sure to forward the right packet

Dynamic-weight Disjoint Path 
Pairs (DPP) heuristic yields 5-
35% lower cost than other 
heuristics
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Approach: Trust Management via Hestia 

Issues
• Unauthorized commands and spoofed data
• Unauthorized disclosure of sensitive information 

Approach: Dynamic and Composable Trust (DCT) Framework
• A set of requirements that must be met by any trust 

management system in order to provide DCT

Hestia
• A trust management system supporting DCT that provides:

– time-aware trust relationships
– trust composition
– evaluation of access trust, generalized policies for access 

control, and data trust
– systematic reasoning about the quality of (possibly 

aggregated) data provided by a set of principals
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Approach: Trust Management via Hestia
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Project: Trust Negotiation

• Trust negotiation currently has a solid theoretical foundation
– Results on soundness, interoperability, and information leakage
– Allows for rigorous reasoning about these systems

• Issues: bridge the gap between theory and practice. Current trust negotiation 
theory does not:

– Ensure that system states used during policy evaluation are consistent
– Address threats to system availability
– Easily enable local audit and administrative control

Goal: Flexible policy-based authorization for 
inter-control-center information sharing

Access?

Service

Control Center 2Alice at Control Center 1

P

Employee at NERC-
certified control center? 

Audit policy?

Audit policy

Employee ID

Access granted
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Power operator credential.  Audit Policy?

Approach: Trust Negotiation  
State Consistency Example Scenario

Alice requests access to the status database

Access granted!Service

Control Center 2Alice at Control Center 1

Certified power operator in NERC-certified control 
center?  Information classifier?

The scenario: Alice can be either a power operator or an internal auditor in Control 
Center 1, though these roles are mutually exclusive.  As an internal auditor, she can 
also act as an information classifier.  Alice wishes to access a remote service available 
to power operators who are information classifiers, and forces the use of an 
inconsistent system state to accomplish this.

Certified audit policy.P
Information classifier certificate.

X

√

√
√

Inconsistent
State!
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Approach: Trust Negotiation 
State Consistency

• Authorization decisions amount to predicate evaluations over a system 
view formed by a collection of credentials

• System views are not necessarily snapshots
– Leads to a semantics of policy satisfaction that is different from that 

used in centralized systems
– Requires ways to enforce consistency constraints during proof 

construction without impeding entity autonomy

• We address this problem as follows:
– Define several increasingly stringent consistency levels and identify 

their associated guarantees
– Provide provably sound enforcement mechanisms for these levels
– Examine several types of design trade-offs

• Further generalizations and results are forthcoming
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Approach: Trust Negotiation 
Availability

• When compared to identity-based authorization schemes, trust 
negotiation is very heavyweight
– Expensive local decision-making processes
– Many interacting system components
– Multiple rounds of messages

• Availability is an important property of information systems for critical 
infrastructure
– To study this problem, we have developed TrustBuilder2, a flexible 

framework that enables quantitative comparison of different 
negotiation strategies and system configurations

• Availability subgoals
– Profile system execution to determine bottlenecks and optimize 

subsystems
– Evaluate the performance gains afforded by a new policy compliance-

checking technique developed at UIUC
– Examine solutions to network-based DoS attacks
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Project: Credentialing Between Control Centers 
and ISO

Issues
• In case of emergencies caused by 

attacks and failures, timely 
information dissemination is 
needed

• How can we develop mechanisms that ensure timely 
information dissemination, trustworthiness of information, 
and access control?

• If information is not disseminated in a timely manner, then 
cascading failures may occur 
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Approach:  Credentialing 

A Credentialing System that ensure timeliness, trustworthiness, 
and access control

• Obtains information via hierarchical data exchange
– Leverage power grid hierarchy
– Use ISOs for information dissemination

• Certifies information at ISOs
– ISO validates data
– ISO signs data

• Distributes information using short-lived PKI credentials
– Eliminates need for revocation tools
– Leverages existing authentication mechanisms
– Utilizes experiences with deployed computational grids
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Approach:  Credentialing 

• ISO obtains “extra”
information from control areas 
on a regular basis

– E.g., SCADA data
• ISO validates, stores, and 

protects data
– E.g., using state 

estimators, databases
• In an “emergency” situation 

users obtain PKI credentials
– E.g., from trusted 

certificate authorities using 
passwords

• ISO allows access to and 
audit use of “extra”
information based on 
credentials

Control Area
Operator

(Browser)

ISO

Certificate
Authority

Database

(Relevant Data)

Obtain credentials
and access data
securely during
emergencies

Public
Data

Web Server

Credential-
Protected

Data
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Communication & Control Protocol  Contributions

• Evaluated SCADA architectures and protocols for data transmission 
and aggregation (IEC 61850)

• Identified security threats and attacks in SCADA networks
• Explored mathematical models for QoS/data/alarm aggregations
• Analyzed requirements for generalized trust in pub/sub systems
• Achieved rigorous reasoning about trust negotiation
• Designed Architectural Innovations

– Exploration of selected aggregation functions and algorithms over 
wireless network technologies

– Initial design of alert and attack containment to limit spread of 
unwanted updates

– Deployment of real-time QoS mechanisms in standard IP-based 
network technologies for QoS-aware dissemination of TCIP 
information

– Development of trust management for TCIP components
– Design of credentialing for emergencies at ISO level




