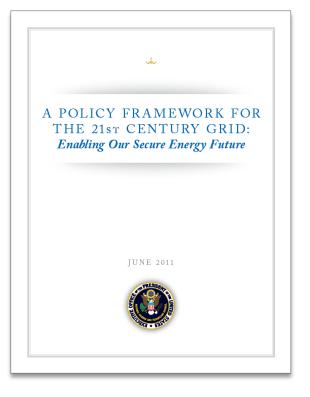
U.S. DEPARTMENT OF

Office of Electricity Delivery and Energy Reliability

Smart Grid Cybersecurity Lessons Learned


From More than 11 Million Smart Meters Deployed

Hank Kenchington Deputy Assistant Secretary Office of Electricity Delivery and Energy Reliability

Energy Infrastructure & Security Act of 2007 (EISA) Title XIII – SMART GRID

"It is the policy of the United States to support the modernization of the Nation's electricity transmission and distribution system to maintain a reliable and secure electricity infrastructure that can meet future demand growth..."

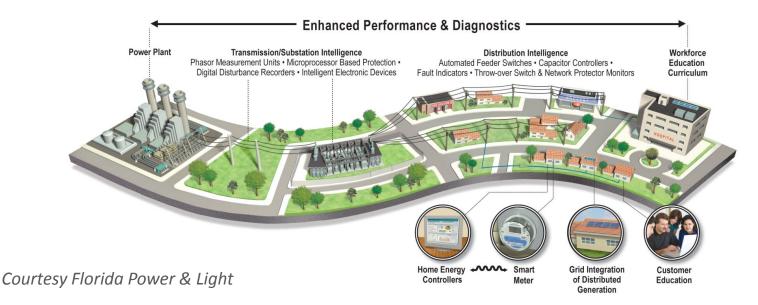
Office of Electricity Delivery

and Energy Reliability

"We'll fund a better, smarter electricity grid and train workers to build it -- a grid that will help us ship wind and solar power from one end of this country to another."

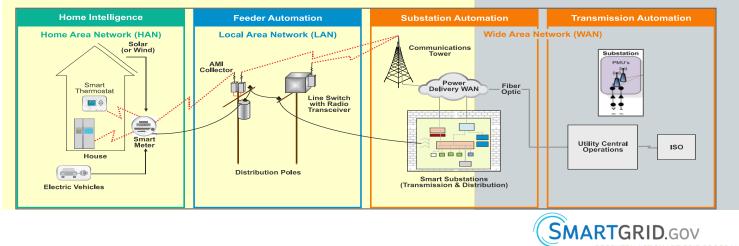
President Barack Obama

U.S. DEPARTMENT OF



- **1.** Empowers consumers
- 2. Accommodates all generation and storage
- **3.** Enables new products, services and markets
- 4. Increases power quality for our connected economy
- **5.** Optimizes asset use and operates efficiently
- 6. Anticipates and responds to disturbances
- 7. Operates resiliently against attack and natural disaster

Smart Grid Requires Seamless, SECURE Communications Across Multiple Interconnected Domains and Platforms



2009: No cybersecurity standards for distribution system or home area networks

2005: Mandated cybersecurity standards for bulk power system

RECOVERY ACT SMART GRID PROGRAMS

Generic Smart Grid Communications Architectures

2009 Recovery Act Provided \$4.5 billion for Grid Modernization

Programs created by statute:

U.S. DEPARTMENT OF

ENERG

American Recovery and Reinvestment Act of 2009

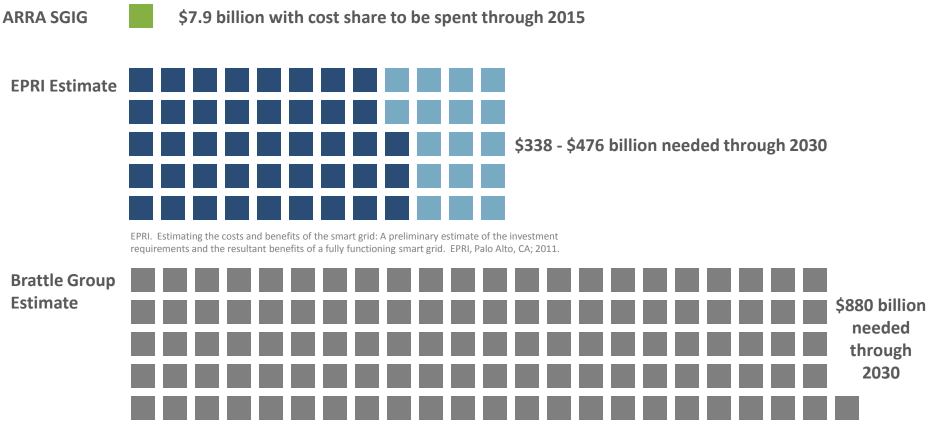
- \$3.4 billion Smart Grid Investment Grants (SGIG)*
- \$620 million Smart Grid Regional Demonstrations (SGDP)*
- \$100 million Workforce Training
- \$80 million Interconnection-wide Transmission Planning and Resource Analysis
- \$12 million Interoperability Standards

Additional OE Recovery Act Initiatives:

- \$44 million-Technical Assistance to States
- \$10 million-Local Energy Assurance Planning

Source: www.smartgrid.gov

*Originally authorized by the Energy Infrastructure Security Act 2007, EISA 1306 and EISA 1304



- Accelerate deployment of smart grid technologies across the transmission and distribution system and empower consumers with information so they can better manage their electricity consumption and costs
- Measure the impacts and benefits of smart grid technologies to reduce uncertainty for decision makers and attract additional capital and further advance grid modernization
- Accelerate the development and deployment of *effective cybersecurity protections and interoperability standards* for smart grid
 technologies and systems

SGIG projects seek to accelerate industry investment

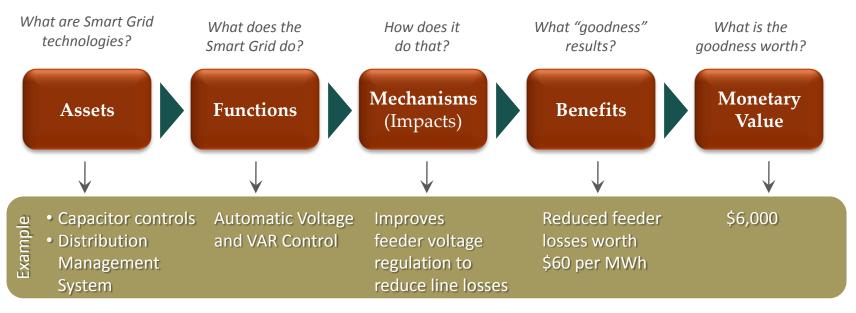
Chupka, M.W. Earle, R., Fox-Penner, P., Hledik, R. Transforming America's power industry: The investment challenge 2010 – 2030. Edison Electric Institute, Washington D.C.,: 2008.

+\$7.9 Billion in Smart Grid Assets Now Being Deployed thru SGIG

SGIG Project Expected Benefits

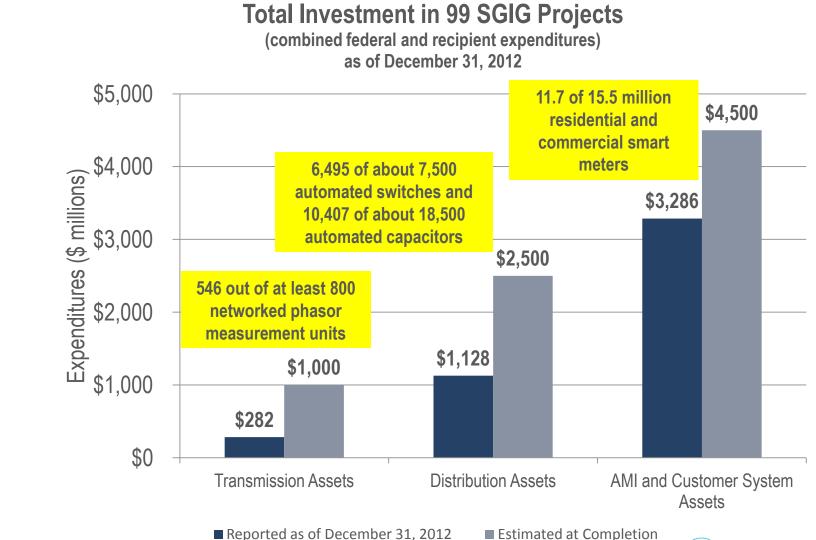
RECOVERY ACT SMART GRID PROGRAMS

	Total Funds	Key Installations by 2015	Expected Benefit	
0 PHU-101	<u>Transmission</u>			
A real	\$580 million	800 phasor measurement units	Real-time voltage and frequency fluctuations visible across the system	
a the	Distribution			
	\$1.96 billion	7,500 automated switches 18,500 automated capacitors	Outage management. Improved reliability, VAR control	
	AMI			
	\$3.96 billion	15.5 million smart meters	Operational savings: fewer truck rolls, automated readings, reduced outage time	
	Customer Systems			
	\$1.33 billion	 >222,000 direct control devices >192,000 thermostats >7,000 in-home displays 	Increased customer control; reduced peak demand	


SGIG Applications and Benefits Matrix

Benefits	Smart Grid Technology Applications					
	Consumer-Based Demand Management Programs (AMI- Enabled)	Advanced Metering Infrastructure (AMI) Applied to Operations	Fault Location, Isolation and Service Restoration	Equipment Health Monitoring	Improved Volt/VAR Management	Synchrophasor Technology Applications
	 Customer devices (information and control systems) 	 Meter services Outage management Volt-VAR management Tamper detection Back-Office systems support (e.g., billing and customer service) 	 Automated feeder switching Fault location AMI and outage management 	 Condition-based maintenance Stress reduction on equipment 	 Peak demand reduction Conservation Voltage Reduction Reactive power compensation 	 Real-time and off-line applications
Capital expenditure reduction – enhanced utilization of G,T & D assets	V			•	•	V
Energy use reduction	V	~	~		4	v
Reliability improvements		~	~	4		V
O&M cost savings		~	~	•		
Reduced electricity costs to consumers	v				v	
Lower pollutant emissions	v	~	~		~	✓
Enhanced system flexibility – to meet resiliency needs and accommodate all generation and demand resources	~	V	V	~		v

RECOVERY ACT SMART GRID PROGRAMS



Correlating technology, enhanced grid function and capability, costs, and benefits

Oklahoma Gas and Electric

- 765k customers, 778MW gen
- Study: 2-year demand response study of 6,000 customers in dynamic rate programs with IHDs and "smart" thermostats

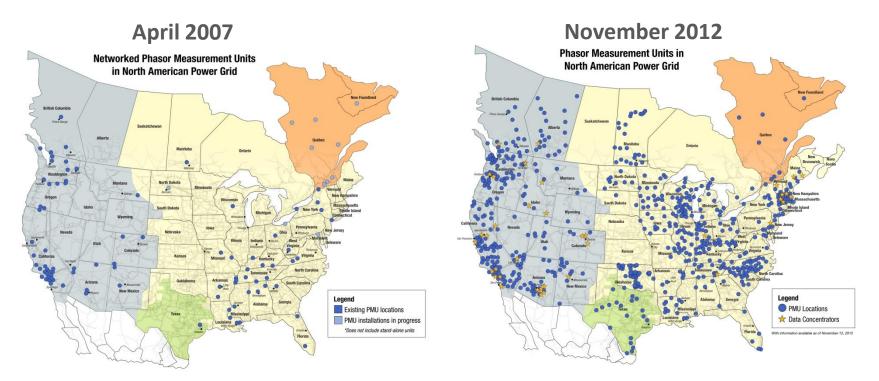
Results:

- Up to 30% reduction in demand during peak periods (variable peak pricing rates).
- The SmartHours program saved an average of \$150 per household in summer 2011.
- ➔ 1.3kw average peak demand reduction
- If benefits continue during wider rollout, OG&E will defer construction of a natural-gas-fired peaking plant

Florida Power & Light

- 4.6 million customers, 70k miles power lines
- Study: Installed 230 automated feeder switches on 75 circuits in Miami area that sense and communicate data about current, voltage, phase, fault occurrence, and switch position to the DMS

Results:


- SAIDI improved 24%. The average outage duration for the six month observation period decreased from 72.3 minutes to 54.6 minutes.
- → SAIFI improved 40%. The average outage frequency during the six month observation period decreased from 1.03 to 0.61 occurrences.
- MAIFI improved 34.9%. The average momentary interruption frequency decreased from 12.6 to 8.2 occurrences.

U.S. DEPARTMENT OF

ENERGY

DOE and NERC are working together closely with industry to enable wide area timesynchronized measurements that will enhance the reliability of the electric power grid through improved situational awareness and other applications

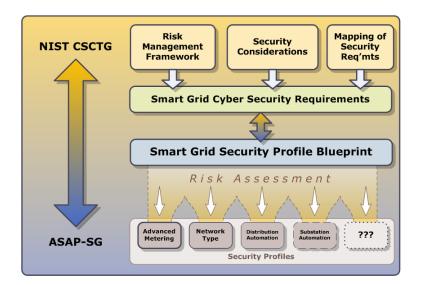
"Better information supports better - and faster - decisions."

RECOVERY ACT SMART GRID PROGRAMS

- Comprehensive project information
- Progress Reports
- 4 new Impact Reports showcasing results and benefits

Build-in security!!!

- Evaluate risks and how they will be mitigated at each stage of the project lifecycle
- Criteria for vendor and device selection
- Summarize relevant cybersecurity standards and/or best practices that will be followed
- Upgradeability of components and systems
- How the project will support emerging standards
- Evidence to demonstrate and validate the effectiveness of the cybersecurity controls
- Accountability

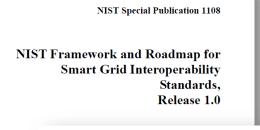


- Industry-government collaboration initiated in 2008 to accelerate development of security requirements and standards for smart grid completed (smartgridipedi.org):
 - AMI Security Profile v2.0
 - Third Party Data Access Security Profile v1.0
 - Distribution Management Security Profile v1.0
 - Wide-Area Monitoring, Protection, and Control (Synchrophasor) Security Profile (Draft) v0.08
 - Security Profile Blueprint v1.0
 - How a Utility Can Use ASAP-SG Security Profiles (White Paper)

Supported development of NISTIR 7628

Industry participants:

- American Electric Power
- Con Edison
- Consumers Energy
- Florida Power & Light
- Southern California Edison
- Oncor
- BC Hydro
- EPRI



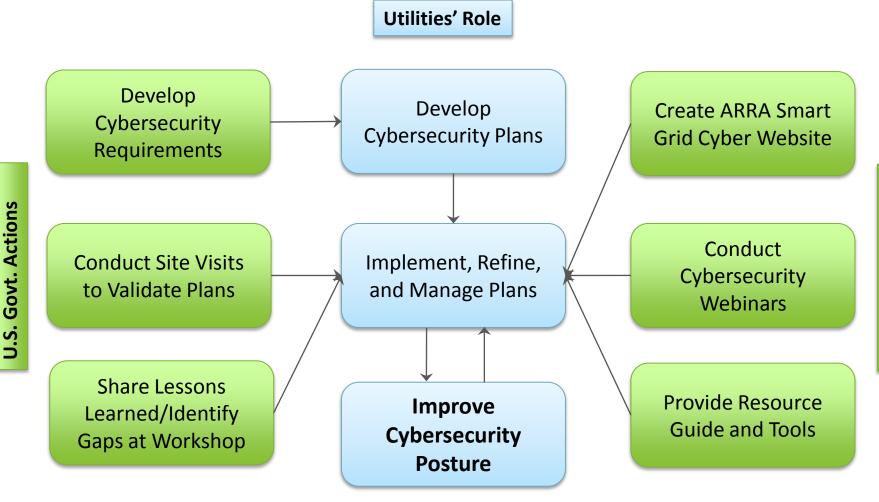
Office of Electricity Delivery and Energy Reliability

NIST Guidelines for Smart Grid Cybersecurity

NISTIR 7628

Guidelines for Smart Grid Cyber Security: Vol. 1, Smart Grid Cyber Security Strategy, Architecture, and High-Level Requirements

> The Smart Grid Interoperability Panel – Cyber Security Working Group


> > August 2010

National Institute of Standards and Technology • U.S. Department of Commerci

- Supports the design, development, and implementation of cybersecurity measures for smart grid technologies:
 - Defining the smart grid architecture and highlevel security requirements
 - Guiding users to specific existing standards and best practices to secure smart grid architecture components
- Does NOT prescribe particular solutions, but provides a guideline to evaluate the overall cyber risks to a smart grid system

U.S. Govt. Actions

- 99 Cybersecurity Plans developed and approved by DOE
- Nearly 100 site visits completed in 2011; 102 site visits completed in 2012
- 2 Smart Grid Cybersecurity Information Exchanges held: August 2011 and December 2012
- Smart Grid Cybersecurity Resource Tool developed and distributed
- Secure website <u>www.arrasmartgridcyber.net</u> developed for ARRA recipients
- Two cybersecurity webinars conducted by PNNL
- Electricity Subsector Cybersecurity Capability Maturity Model developed and piloted at 17 utilities

Best Practices from Site Visits

Assess, Identify, & Mitigate Risks	 Conduct formal weekly vendor progress reviews Continue to assess risk throughout all stages of the project's lifecycle 	
CS Criteria for Vendors & Devices	 Reverse engineer devices and penetration testing to determine security issues Combine industry screening, bidding to a specification, security questionnaire, & adherence to relevant standards in vendor selection 	
Adhere to CS	 Project's requirements checklist tool maps every cybersecurity	
Standards & Best	requirement to relevant cyber security standards (e.g., NIST 800-30, ISO	
Practices	27000, NERC CIP, et al)	
Organizational	 Executive sponsors and management involved in periodic status	
Chain of	meetings, review and approval process and promote/support a strong	
Accountability	security culture	

Best Practices from Site Visits

CS Risk Assessment Methodology	 Methodology attempts to predict risks prior to exposure and proactively implement mitigating strategies
Assess Impact on Critical Functions	 Weekly meetings ensure that proposed changes to the project do not affect critical grid control functions Risk-based assessment methodology specified as an annual requirement
Policy, Procedural, & Technical Mitigation	• Major vendor's contract retired to bring key cybersecurity functions back to the enterprise based on unacceptable vendor performance
Confidentiality, Integrity, & Availability	 Strong encryption, VPNs, two-factor authentication, and other best practices to safeguard system data Strong firewalls, data encryption, intrusion detection, data loss prevention, etc. to include third party communication, and backup off-site

Logging, Monitoring, Alarming, & Notification	 Tamper-alert capabilities on unsupervised field equipment Firewall, monitoring, and logging from existing security capabilities on internet- facing networks Logs analyzed daily for anomalies and malware indications; weekly security event reports per established incident response procedure
Logical & Physical Security Not Under Project Jurisdiction	 Remote access by third party to various systems allowed on an as-needed, limited basis and is closely monitored Project is encrypting data and using VPNs to provide end-to-end security
Updating, Upgrading, & Patching	 Processes support pre-production testing, roll-out into production and reversal if necessary Strong enterprise update, upgrade, and patch management business process, including testing before deployment Personnel performance metrics and compensation tied to standards compliance
Test, Demonstrate, Validate, & Document Effectiveness	 Annual internal vulnerability assessments that include both corporate and vendor servers to validate security posture 3rd-party independent audit conducted to include project's Information Security Program Internal and external vulnerability assessments of the organization's technical systems

- What It Is: An easy-to-navigate guide, risk mitigation checklist, step-bystep template, and 78-question procurement guide
- How It is Used: To help electric utilities assess and build an improved cybersecurity plan for their smart grid technologies
- Created by: National Rural Electric Cooperative Association (NRECA) with \$33.9 million in Recovery Act stimulus funds
- Who Is Using It: 23 electric coops participating in the NRECA's regional smart grid demonstration project; plus <u>4,000 downloads</u> from across industry

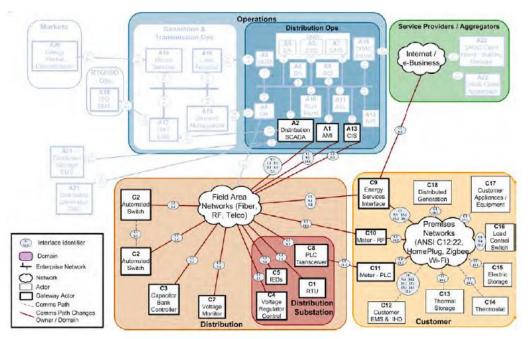
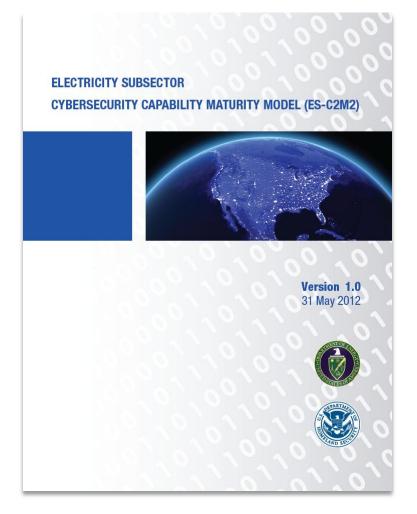
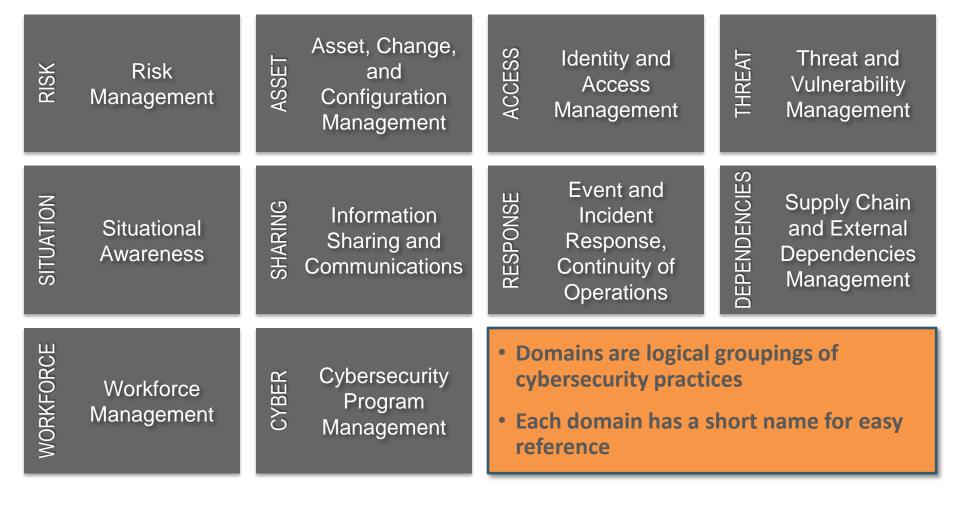


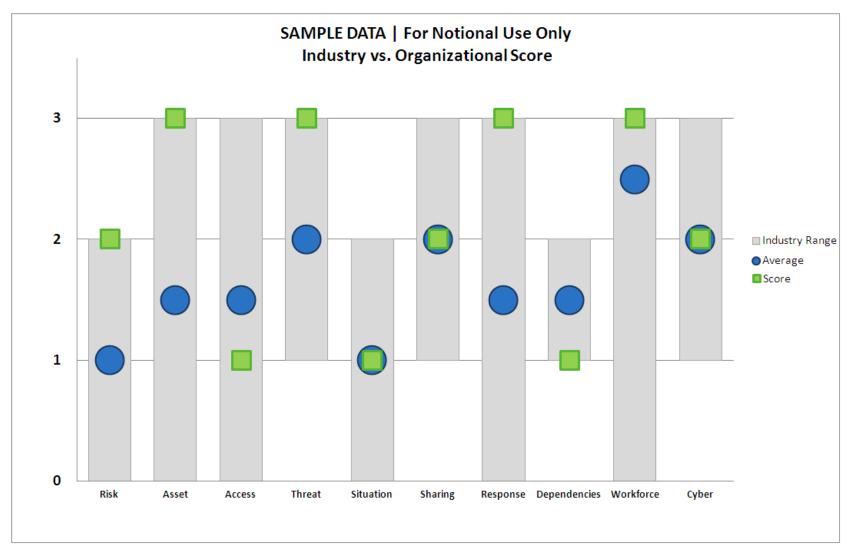
Figure 4. Smart Grid Demonstration Grant Automation Components and Interfaces.



Electricity Subsector Cybersecurity Capability Maturity Model

White House initiative with DHS and industry and cybersecurity experts to develop the **ES-C2M2**, enabling electric utilities and grid operators to:


- Assess their cybersecurity capabilities using a common tool
- Prioritize their actions and investments to improve cybersecurity


ES-C2M2 Domains

Notional Sample Report Industry Scores vs. Organization

U.S. DEPARTMENT OF

Office of Electricity Delivery and Energy Reliability

DOE Cybersecurity R&D (CEDS) Aligned with Roadmap

((SMARTGRID.GOV

RECOVERY ACT SMART GRID PROGRAMS

Higher Risk, Longer Te Projects → Core NSTB Program → Frontier Research → Academia Projects → Minimum Cost Share	Projects → National La Projects → Lower Cos Part	nering	ower Risk, Shorter Term Projects → Industry Led Projects → Higher Cost Share	
Core & Frontier (NSTB)	Path to Comm Academia – Led	ercialization Laboratory – Led	Industry – Led	
 Argonne National Laboratory Idaho National Laboratory Oak Ridge National Laboratory Los Alamos National Laboratory Lawrence Berkeley National Laboratory Pacific Northwest National Laboratory Sandia National Laboratory 	 TCIPG Cornell University Dartmouth College UC-Davis University of Illinois Washington State University SEI at Carnegie Mellor 	 Idaho National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laborator 	 Applied Communication Services Grid Protection Alliance Honeywell Schweitzer Engineering 	

U.S. DEPARTMENT OF

Office of Electricity Delivery and Energy Reliability

Lemnos Interoperable Configuration Profiles

Products built to a Lemnos configuration profile provide easy interoperability and comparable and compatible cybersecurity functions.

SE

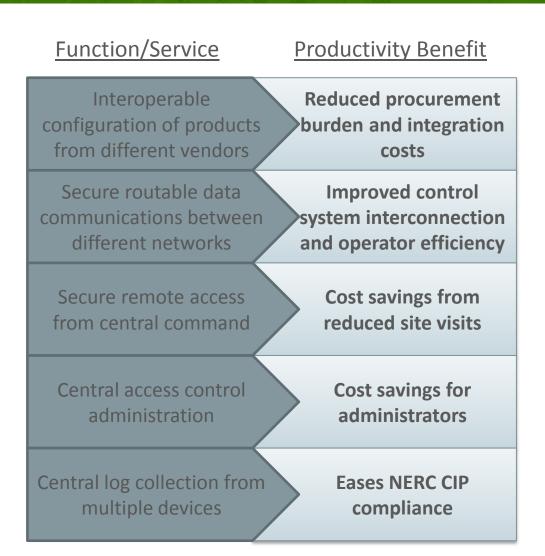
Sandia National Laboratories

Vendors Using Lemnos:

SCHWEITZER

ENGINEERING

......


CISCO

ABORATORIES

SIEMENS

Padlock Security Gateway

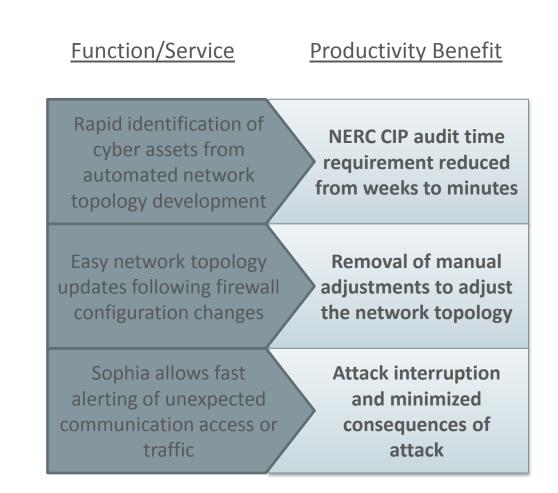
Padlock securely connects distribution field components – low power, low cost gateway with strong access control and password management

Function/Service	Productivity Benefit
Built to Lemnos	Inherits all Lemnos
configuration profiles	productivity benefits
Communication product with integrated security	Easier patching and reduced engineering and safety costs
Sensing and notification of	Enables automatic
physical tampering	quarantine of remote
(coming in 2013)	devices

Project Successes:

- Accelerated commercial release to meet customer demand
- Product shipping daily

Partners: Schweitzer Engineering Laboratories (SEL), Sandia National Laboratories (SNL), Tennessee Valley Authority (TVA)



Network Access Policy Tool (NetAPT) and Sophia Tool

NetAPT generates a network topology description to identify vulnerabilities in a utility's global access policy and allows operators to validate security configurations

Project Successes:

- Developed by TCIPG.
- More than 20 copies of NetAPT have been licensed; DHS funding commercialization
- TCIPG's industry partners are now using NetAPT for vulnerability assessments and compliance audits
- **Sophia** was beta tested by 29 industry participants and is moving toward commercialization

Visit:

for more information

